Skip Nav Destination
Close Modal
Search Results for
tensile residual stress
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 75 Search Results for
tensile residual stress
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1038-1046, October 22–25, 2013,
... Abstract Finite element (FE) modeling has been applied to a stress relaxation cracking (SRC) test in order to evaluate the effects of changing sample geometry and material type. This SRC test uses compressive pre-straining to create a tensile residual stress in modified compact-tension...
Abstract
View Paper
PDF
Finite element (FE) modeling has been applied to a stress relaxation cracking (SRC) test in order to evaluate the effects of changing sample geometry and material type. This SRC test uses compressive pre-straining to create a tensile residual stress in modified compact-tension specimens and has been used to test 316H stainless steel. The FE model is first used to verify that sample integrity will not be compromised by modifying the geometry. The FE model is then applied to candidate Advanced Ultra Supercritical nickel-base alloys 617, 740H, and 800. It is determined that this stress relaxation test will be appropriate for these alloys.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1047-1058, October 22–25, 2013,
..., TIG and SMAW were applied. Both welding process produced good weld joints, and they showed good results in bending tests, tensile tests and the Charpy impact test. To select the annealing conditions for stress relief, stressrelaxation tests and hardness tests were conducted on the weld joints after...
Abstract
View Paper
PDF
Welding processes and fabrication techniques have been studied in the development of Advanced USC boilers. Advanced 9Cr steels, Fe-Ni alloy (HR6W) and Nickel base alloys (HR35, Alloy 617, Alloy 263, Alloy 740 and Alloy 740H) have been selected as candidate materials for the boiler. The weld joints of these alloys were prepared from plates, small diameter tubes and large pipes, and welding procedure tests were performed. In this study, TIG and SMAW were applied. Both welding process produced good weld joints, and they showed good results in bending tests, tensile tests and the Charpy impact test. To select the annealing conditions for stress relief, stress relaxation tests and hardness tests were conducted on the weld joints after various heat treatments. The microstructure was also evaluated by SEM and TEM. Creep rupture tests are being performed for the weld joints with and without heat treatment. The maximum creep rupture tests are expected to take over 100,000 hours. In the study of fabrication techniques, hot bending tests by high frequency induction heating for large pipes and cold/hot bending tests for small diameter tubes were established. After the bending tests, mechanical property tests such as tensile tests, impact tests and creep rupture tests were conducted. The effect of pre-strain on creep strength was studied to take the creep test results after bending into consideration. The creep rupture test will be continued for specimens from weld joints and bending pipes to show their long term reliability.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... for the bending process of TP347H tube. (a) Effective strain distribution, (b) Residual tensile stress distribution after spring back Figure 10 shows the comparison a plastic deformation amount and residual stress (1st principal stress) according to positions of bended tube from FE simulation. The positions...
Abstract
View Paper
PDF
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, October 15–18, 2024,
... primary stress levels associated with thick-walled casings. While creep rupture is unlikely due to the low primary stress levels, it will be demonstrated in a subsequent section that thermal cycles can cause residual tensile stresses due to cyclic plastic deformation that can exacerbate creep damage...
Abstract
View Paper
PDF
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... material condition to determine the effect of released residual stresses. Tensile Specimens All slow strain rate tensile (SSRT) tests in oxygenated high-temperature water were performed by using tensile specimens of the specimen size M6 x 0.5 with a diameter of 4 mm and a gauge length of 20 mm. Before...
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 802-812, October 11–14, 2016,
... Test item Tensile tests Creep rupture tests Stress relaxation Microstructure stability Test parameters 25,100,200,300,400,500,600,650,700,725,750 and 800 650,700,725 for 500 30000h 700 and 725 , 0.15% initial strain Ageing at 650 and 725 for 20 5000h Structure characterization of long time ageing...
Abstract
View Paper
PDF
Based on the research and development of Ni-based alloy of 700°C steam turbine bolts and blades worldwide, the process, microstructure, properties characteristics and strengthening mechanism of typical 700°C steam turbine bolts and blades materials Waspaloy are discussed in this study. The result shows that Waspaloy has higher elevated temperature yield strength, creep rupture strength, anti-stress relaxation property and good microstructure stability. The Waspaloy alloy could meet the design requirements of 700°C steam turbine bolts and blades.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 537-548, October 22–25, 2013,
.../12Cr1MoVG welded joints can also meet the standards no matter if the post weld heat treatment is performed or not. 542 4. THE LEAKS AND SOLUTIONS OF T23 WATER WALL IN 1000MW USC TOWER BOILER 4.1 Welding residual stress of T23 and 12Cr1MoVG water wall The welding residual stress test results of T23 tube...
Abstract
View Paper
PDF
In this paper, the performance of T23 and 12Cr1MoVG water wall tubes as well as their welded joints in engineering applications is reported. It was found that the T23 water wall tube may have water leak problems during its operation. In order to make sure the safe operation, leakage reasons of T23 water wall tube were analyzed and improvement measures were taken. Recommendations on the choice of water wall material of 1000MW USC tower boiler are given.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 540-551, October 15–18, 2024,
... and coating on corrosion performance. canisters chloride-induced stress corrosion cracking cold spraying compressive residual stress light water reactors microstructure spent nuclear fuels tensile stress Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from...
Abstract
View Paper
PDF
Extended storage of spent nuclear fuel (SNF) in intermediate dry cask storage systems (DCSS) due to lack of permanent repositories is one of the key issues for sustainability of the current domestic Light Water Reactor (LWR) fleet. The stainless steel canisters used for storage in DCSS are potentially susceptible to chloride-induced stress corrosion cracking (CISCC) due to a combination of tensile stresses, susceptible microstructure, and a corrosive chloride salt environment. This research assesses the viability of the cold-spray process as a solution to CISCC in DCSS when sprayed with miniature tooling within a characteristic confinement in two different capacities: cleaning and coating. In general, the cold-spray process uses pressurized and preheated inert gas to propel powders at supersonic velocities, while remaining solid-state. Cold-spray cleaning is an economical, non-deposition process that leverages the mechanical force of the propelled powders to remove corrosive buildup on the canister, whereas the cold spray coating process uses augmented parameters to deposit a coating for CISCC repair and mitigation purposes. Moreover, both processes have the potential to induce a surface compressive residual stress that is known to impede the initiation of CISCC. Surface morphology, deposition analysis, and microstructural developments in the near-surface region were examined. Additionally, cyclic corrosion testing (CCT) was conducted to elucidate the influence of cold-spray cleaning and coating on corrosion performance.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 712-722, October 15–18, 2024,
.... Residual stresses from welding, stress concentrations at the weld toe, and microstructural inhomogeneities resulted in an elevated tensile stress field and increased susceptibility to SCC and cracking. Therefore, the conditions for SCC to occur were present. However, chloride-induced SCC of materials...
Abstract
View Paper
PDF
The incore instrumentation system of a pressurized water reactor (PWR) facilitates neutron flux mapping and temperature measurements at specific core locations. A guide conduit, extending from the seal table to the lower reactor pressure vessel head, guides and protects each incore guide thimble between the table and the lower reactor vessel head. Each flux thimble houses a detector and drive cable. Once filled with reactor coolant, the conduit becomes an extension of the reactor coolant pressure boundary. This paper reports the examination results of cracking detected in a TP304 stainless steel guide conduit adjacent to a fillet weld at the upper surface of a TP304 seal table. The cracking resulted in reactor coolant leakage that was detected by the presence of boric acid deposits on the exterior of the conduit and table. Failure analysis including dimensional measurements, chemical analysis, stereomicroscopy, metallography, and scanning electron microscopy showed that extensive cracking of the conduit and seal table material occurred due to stress corrosion cracking (SCC). Assessment showed that chlorine-containing deposits were present on the exterior of the conduit and on the surfaces of the seal table and were due to the design and operation of HVAC systems at the coastal plant. Stainless steels are susceptible to SCC in environments with elevated temperatures, chloride contents, and increased tensile stress – particularly in non-post weld heat treated (PWHT) weld regions and the heat affected zone (HAZ). This was the apparent primary cause of the failure. However, chloride-induced SCC of such materials typically results in transgranular crack propagation, whereas the observed cracks were indicative of intergranular stress corrosion cracking (IGSCC). Microstructural analysis showed that the observed cracks initiated in sensitized areas of material adjacent to the weld. Sensitization of the material caused chromium depletion from adjacent areas and increased susceptibility of the depleted areas to IGSCC. In this case, the most probable source of sensitization was related to welding and the long-term growth of grain boundary carbides nucleated during welding. This was considered a contributing cause to the failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 488-495, October 21–24, 2019,
... Abstract This study aims to examine the effects of grain boundary oxidation and creep on crack initiation and fracture behaviors in cold worked surface layer, under static tensile stresses in air. To determine these effects in relation to percent cold work and hardness scale, cold-rolled plates...
Abstract
View Paper
PDF
This study aims to examine the effects of grain boundary oxidation and creep on crack initiation and fracture behaviors in cold worked surface layer, under static tensile stresses in air. To determine these effects in relation to percent cold work and hardness scale, cold-rolled plates with a reduction ratios between 10% and 50% were prepared. Uniaxial constant load (UCL) tests were conducted at elevated temperature in air using smooth round bar specimen. UCL tests with a load of 0.9σy (926MPa) at 550°C show that rupture time for all cold- rolled materials were shorter than that of as-received material. From cross-sectional observation after UCL testing, surface crack at grain boundary and voids were observed in as-received material, whereas creep cracks were also observed in cold-rolled materials. This implied that crack initiation was assisted by cold working. Comparing test results with a load reduced to 0.8σy (823MPa), difference of rupture time was expected as a factor of 5 for as-received material, and measured as 2-3 for cold-rolled materials. It was suggested that cold worked layer was more sensitive to creep than base metal.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 429-439, October 11–14, 2016,
... strength. All creep rupture test results for materials tempered within 10h exceeded the average creep strength of T91. Shorter tempering times such as 0.5h and 1h were clearly correlated with longer time to rupture at 600°C under 80MPa to 100MPa stress conditions. Reduction of area in creep-ruptured...
Abstract
View Paper
PDF
The influence of holding time during tempering on the long-term creep rupture strength of mod.9Cr-1Mo steel was investigated in this study, so as to elucidate proper heat treatment for boiler applications. Tempering was conducted at 770°C for 0.5h, 1h, 3h, 10h and 100h for the test materials, after re-normalization at 1050°C for 1h in all cases. Creep rupture tests were conducted at 600°C, and ruptured specimens were investigated to better understand the microstructural changes, including changes in the number density of precipitates, in order to observe and discuss their creep strength. All creep rupture test results for materials tempered within 10h exceeded the average creep strength of T91. Shorter tempering times such as 0.5h and 1h were clearly correlated with longer time to rupture at 600°C under 80MPa to 100MPa stress conditions. Reduction of area in creep-ruptured specimens decreased principally with lowered creep stress. Materials tempered for 0.5h and 100h showed the lowest reduction of area at 90MPa and 100MPa respectively, and their reduction of area recovered at lower than those stress levels. These stresses, showing minimum reduction of area, met inflection stress in the creep rupture strength curve.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1193-1203, October 21–24, 2019,
... shows the residual stress-time curve of Waspaloy alloy at 700 with 0.15% initial strain. It can be seen that Waspaloy alloy has excellent resistance to stress relaxation at 700 . Extrapolated calculations show that the residual stress of Waspaloy alloy after 100,000 hours is about 110 MPa, which can...
Abstract
View Paper
PDF
Research and development of 700°C A-USC steam turbine unit needs to be supported by materials with excellent overall performance. Waspaloy is a kind of γ′ phase precipitation hardening superalloy developed by the United States in the 1950s. In the 700°C R&D Plan of Shanghai Turbine Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully meet the requirements of high-temperature blades and bolts of 700°C A-USC unit. It shows that the 700°C A-USC unit high temperature blades and bolts were successfully developed by Shanghai Turbine Plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 565-572, October 22–25, 2013,
... welding practice. An additional factor in the susceptibility of T24 welds to hydrogen embrittlement is the buildup of residual stresses that can occur during panel manufacture for various reasons e.g. in-plane and out of plane bending. A consequence of this is that in order to further reduce the risk...
Abstract
View Paper
PDF
T24 tube material (7CrMoVTiB10-10), with its combination of high creep strength and potential to be welded without using preheat, is regarded as a candidate waterwall material for Ultra Supercritical (USC) boilers. However, its reputed sensitivity to hydrogen and potential for secondary hardening may have adverse impacts on construction of waterwall panels. Doosan Babcock Ltd have investigated the response of welds made in T24 tubing to secondary hardening via changing hardness in a series of ageing heat treatment trials. Also, the response of the material to hydrogen infusion has been investigated
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1018-1026, October 11–14, 2016,
... by specialized thermo(mechanical) treatment. The paper will outline the sensitivity of tensile, creep, stress relaxation and impact properties on processing and heat treatment. Furthermore an outlook on future development potentials will be derived. creep life creep properties heat treatment high...
Abstract
View Paper
PDF
High chromium HiperFer (High performance ferritic) materials present a promising concept for the development of high temperature creep and corrosion resistant steels. The institute for Microstructure and Properties of Materials (IEK-2) at Forschungszentrum Jülich GmbH, Germany develops high strength, Laves phase forming, fully ferritic steels which feature excellent resistance to steam oxidation and better creep life than state of the art 9-12 Cr steels. Mechanical strength properties of these steels depend not only on chemical composition, but can be adapted to various applications by specialized thermo(mechanical) treatment. The paper will outline the sensitivity of tensile, creep, stress relaxation and impact properties on processing and heat treatment. Furthermore an outlook on future development potentials will be derived.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
... behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms. creep strength enhanced ferritic steel hydrogen induced cracking...
Abstract
View Paper
PDF
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
.... 427 1000 800 Stress (MPa) 600 S1 400 S2 S3 S4 200 0 0 5 10 15 20 25 30 35 Elongation Figure 4: Tensile test results of the four different heat treated conditions for the CMSX-4 samples used in this study. Table 4: Tensile test results for the four different heat treated samples Sample No. S1 S2 S3 S4...
Abstract
View Paper
PDF
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded...
Abstract
View Paper
PDF
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 897-903, October 21–24, 2019,
... fabrication process for TiAl alloys is required. One of the promising processes for the fabrication of TiAl alloys is the electron beam melting (EBM) because it allows the fabrication of complicated shapes with low residual stress and high process speed at vacuum. Recently, several researchers reported an EBM...
Abstract
View Paper
PDF
Electron beam melting (EBM) is one of the candidate manufacturing processes for TiAl alloys which have been considered as next generation high-temperature structural materials. The microstructure and mechanical properties of Ti-48Al-2Cr-2Nb (48-2-2) alloy bars fabricated using EBM were investigated, with a particular focus on the effect of processing parameters such as input energy density and building direction. We observed that the microstructure of the alloy bars fabricated using EBM depends strongly on the processing parameters used during the fabrication process of alloy. In particular, the alloy bars fabricated under appropriate processing parameters have a unique layered microstructure composed of duplex regions and equiaxed γ-grain regions (γ bands). Because of their fine microstructure and deformable soft γ bands, the alloy bars with the unique layered microstructure exhibit higher strength and higher ductility at room temperature (RT) than that of cast alloys. In addition, the alloy bars fabricated at an angle between the building direction and the loading axis of 45° show good fatigue properties at RT even without hot isostatic pressing treatment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1-10, October 21–24, 2019,
... and ferritic-martensitic steels over half-life stress range (50 - 650 °C, emech. = -0.6 eth. to -1eth., 10 Ks-1, no holding times at Tmin. and Tmax.) Growth of long fatigue cracks: Residual life Fatigue crack propagation of the tested steels in CT configuration is depicted in Figure 4a. Despite of much higher...
Abstract
View Paper
PDF
Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure of conventional and novel steels were investigated in thermo-mechanical fatigue and fatigue crack propagation experiments. Based on the results, improved, ferritic “HiperFer” (High performance Ferrite) steels were designed, produced and characterized. A brief description of the current state of development is given.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 304-314, October 21–24, 2019,
... (dimensions in mm) Removal of Impression Specimen and Creep Testing Once the uniaxial specimen had fractured, samples were removed from four locations and the grip at distances shown in Table 1. The error shown in the calculated true strain reflects the residual stress caused by the cutting and the width...
Abstract
View Paper
PDF
This paper investigates the effect of high temperature tensile strain on subsequent creep strength in grade 91 steel. Failed hot tensile specimens have been sectioned at various positions along the specimen axis, and therefore at different levels of hot tensile strain, to obtain material for creep strength evaluation. Because of the limited amount of material available for creep testing obtained in this way, creep testing has been carried out using the specialised small-scale impression creep testing technique. The grade 91 material has been tested in both the normal martensitic condition and in an aberrant mis-heat treated condition in which the microstructure is 100% Ferrite. The latter condition is of interest because of its widespread occurrence on operating power plant with grade 91 pipework systems.
1