Skip Nav Destination
Close Modal
Search Results for
sulfidizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 20 Search Results for
sulfidizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 135-142, October 21–24, 2019,
... Abstract In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events...
Abstract
View Paper
PDF
In downstream oil industry applications, high-temperature sulfidation corrosion is generally caused by sulfur species coming from the crude; additionally, naphthenic acids or hydrogen can considerably worsen the corrosivity of the environment. During plant operations, several events may occur that boost the severity of corrosion: high feedstock turnover, with increasing “active” sulfur species; skin temperature rise due to the increasing insulation effect of the scale, generating an over-tempering of the material and possible degeneration into creep conditions. Thor115 is a ferritic steel with 11% chromium content to resist sulfidation. It has excellent creep properties for high temperature environments: higher allowable stresses than grade 91, keeping the same manufacturing and welding procedures. At the same time, it has the characteristics of ferritic steel, ensuring enhanced thermal conductivity and lower thermal expansion compared to austenitic steels. Comparative corrosion tests between Thor115 and other ferritic steels typically used in this industry (e.g., grade T/P5 and grade T/P9) have been carried out to simulate different corrosive conditions, confirming the superior properties of Thor115 relative to other ferritic grades. For these reasons, Thor 115 is a suitable replacement material for piping components that need an upgrade from grade T/P9 or lower, in order to reduce corrosion rate or frequency of maintenance operations.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 337-356, October 25–28, 2004,
... superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion...
Abstract
View Paper
PDF
Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several types of low NOx environments. In the present study, the susceptibility of FeAlCr weld overlay claddings to hydrogen cracking was evaluated using a gas-tungsten arc welding (GTAW) process. Microsegregation of alloying elements was determined for the FeAlCr welds and compared to a currently used Ni-based superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion resistance of the coatings. It was found that although there were slight differences in the corrosion behavior of the selected FeAlCr weld coatings, all FeAlCr based alloys exhibited superior corrosion resistance to the Ni-based superalloy during exposures up to 2000 hours.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 357-370, October 25–28, 2004,
... coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment of N 2 -10%CO-5%CO 2 -2%H 2 O-0.12%H 2 S (by volume) at 500, 600, 700, and 800°C for approximately seven days. All specimens gained mass after exposure, inversely proportional to temperature increases. Representative cross...
Abstract
View Paper
PDF
An iron aluminide (Fe 3 Al) intermetallic coating was deposited onto F22 (2.25Cr-1Mo) steel substrate using a JP-5000 high velocity oxy-fuel (HVOF) thermal spray system. The as-sprayed coating was characterized by electron microscopy, X-ray diffraction, oxidation, and adhesion. Fe 3 Al coated steel specimens were exposed to a mixed oxidizing/sulfidizing environment of N 2 -10%CO-5%CO 2 -2%H 2 O-0.12%H 2 S (by volume) at 500, 600, 700, and 800°C for approximately seven days. All specimens gained mass after exposure, inversely proportional to temperature increases. Representative cross-sectioned specimens from each temperature underwent scanning electron microscopy (SEM) and X-ray mapping examination. Results are presented in terms of corrosion weight gain and product formation. The research evaluated the effectiveness of an HVOF-sprayed Fe 3 Al coating in protecting a steel substrate exposed to a fossil energy environment.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 420-427, October 25–28, 2004,
... Abstract The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities...
Abstract
View Paper
PDF
The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities of sulfur states in the steel. One is in atomic sulfur state as a solid solution, and the other is in sulfide state as a precipitate. However, it still remains unclear which sulfur state contributes largely to the improvement of the steam oxidation resistance of the steels. In order to elucidate the sulfur state operated more effectively in improving the oxidation resistance, the steam oxidation resistance was investigated with high chromium ferritic steels, Fe-10mass%Cr-0.08mass%C-(0~0.015)mass%S, with controlling the sulfur states in them by proper heat treatments. From a series of experiments, it was found that the sulfide state played a more important role in improving the steam oxidation resistance than the atomic sulfur state. Furthermore, this sulfur effect worked significantly in the steam oxidation test performed at the temperatures above 873K which corresponded to the temperature for the chromium sulfide to dissolve and instead for the chromium oxide to form in the steels. This result indicates that the beneficial effect of sulfur in improving the steam oxidation resistance is related closely to the sulfide stability against the oxide in the steels.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 596-606, October 22–25, 2013,
... in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity...
Abstract
View Paper
PDF
Contrary to expectations, long-term performance of creep stress enhanced ferritic steels (CSEF) falls short of predictions based on short-term data. This discrepancy is attributed to the formation and growth of creep voids, leading to reduced ductility. This study investigates cavities in creep-tested P92 steel, revealing an association with large ceramic particles (1-2 μm) in standard samples. Three distinct particle compositions were identified: boron nitride (BN), manganese sulfide, and γ-Al 2 O 3 . Statistical analysis showed a strong correlation between BN particles and cavity formation. Using a 3D “slice and view” technique with a focused ion beam/field emission gun scanning electron microscope (FIB-FEGSEM), the study revealed irregular shapes for both cavities and associated particles. Furthermore, analysis of the head-gauge transition area (lower stress exposure) showed small cavities near BN particles, suggesting preferential nucleation on these hard, irregular features. These findings strongly support the hypothesis that BN particles play a key role in cavity nucleation, impacting the long-term performance of P92 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
...%CO2-10.75%H2O (CO and H2S turned off). Table 2 shows calculated equilibrium compositions for both gas mixtures. The test consisted of alternating cycles consisting of 4 days sulfidizing-oxidizing and 3 days oxidizing. Samples were cycled at 500h, 1000h and 4940h. Intact surface scale was not removed...
Abstract
View Paper
PDF
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
... penetration. Keywords: Active Sulfide-to-Oxide Mechanism, Hot Corrosion, Oxy Combustion, Coal Ash Corrosion, A-USC 863 INTRODUCTION The recent development of high-efficiency, low-emission coal-fired utility boilers has led to steam conditions of much higher temperatures and pressures.1 Examples include...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
... injection of the corrosion gas. The furnace was heated to the test temperature of 500°C or 650°C.The gas used for corrosion testing represented a typical low NOx combustion environment, with sulfidizing gas composition of 960ppmH2S-6.6%CO2.5%H2-13.4%CO2-71%N2. 1391 In this study, the corrosion tests were...
Abstract
View Paper
PDF
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1422-1431, October 22–25, 2013,
... detected in the inner layer of the corrosion products, considered to represent Ni sulfide. In the case of Ni-based alloys tested using ash B, Alloy 141, Alloy 263 and Alloy 617 show a slightly greater corrosion rate because these alloys contain Mo, which easily reacts with sulfur[10]. It is difficult...
Abstract
View Paper
PDF
Six types of solution treated Ni-based alloy plates having a thickness of 25mm, namely Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W (45Ni-23Cr-7W) and HR35 (50Ni-30Cr-4W-Ti) for advanced-USC boilers, were subjected to corrosion testing. In addition, three types of conventional ferritic and five types of conventional austenitic stainless tubes were also tested to compare their corrosion properties. Hot corrosion tests were conducted in order to assess the effects of temperature, material composition and coal ash composition on hot corrosion. The maximum average metal loss and the maximum corrosion rate were observed under 700°C test conditions. Cr content in the materials played an important role in the corrosion rate, with higher Cr content materials tending to show lower rates. However, Ni-based alloy materials showed slightly greater corrosion rates than those of stainless steels having equivalent Cr content in the over-700°C test condition. It was considered that rich Ni in the alloys easily reacted with sulfur, thus forming corrosion products having low melting points, such that corrosion was accelerated. The concentration of Fe 2 O 3 and NiO in the synthetic coal ash was also observed to affect the corrosion rate.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
... sulfidation, oxidation, carburization and wear in boiler environments. INCONEL Filler Metal 72M is an optimized alloy that offers improved weldability and the lowest corrosion rate of any of the alloys evaluated in our simulated low NOx boiler environment. Testing results are presented along...
Abstract
View Paper
PDF
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 750-761, October 21–24, 2019,
... from the environment. Under certain conditions, sulfur may breakdown the protective scale, and render the A286 susceptible to environmental attack [20]. Sulfur may penetrate through the chrome oxide scale and may react with the chrome in the base metal to form chrome sulfide. This in turn may lead...
Abstract
View Paper
PDF
The A286 is one of the earliest superalloys developed. It has been used for manufacturing different components of turbo machineries because of its balanced high temperature properties. These components include shafts, discs, spacers, blades and fasteners. This paper reviews some of the issues and recent field experiences related to metallurgy, fabrication, in-service evaluation and failure of some of these components. The fabrication aspects including the effects of alloy melting processes, forging parameters and different types of heat treatments on the processed parts are discussed. The importance of these factors on the microstructure and properties of A286 are highlighted. The effects of service exposure on some of these parts are also discussed. In service evaluation involves checking for service induced damage or changes in microstructures and properties so that the suitability of the part for continued service can be determined. The failure analysis section of the paper briefly discusses failures of two expander wheels and an expander disc made out of A286 to pinpoint some of the salient features of damage accumulation and fracture during service.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 304-309, October 11–14, 2016,
... scale on Power Austenite after the experiment is shown in a metallographic cross section and an SEM micrograph in figure 5. The scale thickness is about 10 m, showing also some internal sulfidation zone underneath. In the SEM micrograph, the microstructure of the scale is shown in more detail. The more...
Abstract
View Paper
PDF
The article gives a brief overview of the newly developed austenitic material “Power Austenite”. The microstructure of the Power Austenite is characterized by grain boundary strengthening with boron stabilized M23(C,B)6 and secondary Nb(C,N) in combination with sigma phase and Nb(C,N) as the major grain strengthening precipitates. The material shows a significant creep strength at 700 °C (1292 °F) and 650 °C (1202 °F) as well as fireside corrosion resistance which makes it a possible candidate for 700 °C (1292 °F) power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... oxidizing flue gas environment, similar to that observed on the steam-side of the tube. The oxide layer would generally be protective acting to slow the rate of corrosion with time. Sulfidation - metal attack by sulfur species in the flue gas. This is of particular concern with nickelbased alloy since...
Abstract
View Paper
PDF
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1098-1112, October 11–14, 2016,
... high temperature water hydrogen sulfide microstructure stress corrosion cracking welding Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri-2016p1098...
Abstract
View Paper
PDF
Starting in 2010 a new generation of coal fired power plants in Europe operating at a steam temperature of up 620°C was commissioned. During that commissioning process many cracks occurred in welds of T24 material which was extensively used as membrane wall material in nearly all of the new boilers. The cracks were caused by stress corrosion cracking (SCC) only occurring in the areas of the wall being in contact to high temperature water during operation. The question which step of the commissioning process really caused the cracking was not answered completely even several years after the damage occurred. To answer this question and to define parameters which will lead to cracking in high temperature water many tests were conducted. Generally it was found that slow tensile tests in controlled environment are well suited to get information about materials SCC sensitivity in the laboratory. In the present paper, first the influence of the cracking of welded T24 material in acidic environment containing well-defined amounts of H2S is investigated to address the question if a chemical cleaning process prior to the testing might lead to hydrogen induced SCC. As a second step, cracking behaviour in high temperature water is being investigated. Here the influence of the temperature, the oxygen concentration of the water, the deformation speed of the sample, the heat treatment and the condition of the material on the SCC is analysed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 426-432, October 21–24, 2019,
... steps: (1) Al and S in the alloy react with CaO to generate CaS and Al 2 O 3 , respectively. (2) Al 2 O 3 melts with CaO as liquid slag. (3) CaS is captured by the slag, therefore, sulfur is removed from the alloy. aluminum calcium oxide calcium sulfide desulfurization nickel-base superalloys...
Abstract
View Paper
PDF
It is required to reduce the lifetime cost of turbine blades. To achieve the cost reduction, a refining and recycling method of scrapped turbine blades is proposed. For the establishment of the method, desulfurization mechanism of Ni-base superalloy by solid CaO was studied. 500 g of superalloy containing sulfur was heated in a vacuum induction furnace and kept at 1600 °C. A CaO rod was inserted into the molten alloy and held for 600 s. After the experiment, sulfur content in the alloy decreased from 200 ppm to 54 ppm. On the surface of the CaO rod after the experiment, only Ca, O, Al, and S were found by EPMA analysis. Especially, Al and S were distributed at the surface and grain boundaries of the rod. By powder XRD analysis, CaO, CaS and 3CaO・Al 2 O 3 were identified as constituent phases on the rod. The desulfurization mechanism of superalloy at 1600 °C is supposed to be three steps: (1) Al and S in the alloy react with CaO to generate CaS and Al 2 O 3 , respectively. (2) Al 2 O 3 melts with CaO as liquid slag. (3) CaS is captured by the slag, therefore, sulfur is removed from the alloy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 333-343, October 22–25, 2013,
... ingot ranged from 0.0024 % to 0.0064 %, and the inclusions consist of oxides and sulfides. This result is almost the same as the that of 650 ton ingot, which ranged from 0.0002 % to 0.0082 %. Heat stability test After the mechanical test, the trial LP rotor was gashed to investigate the heat stability...
Abstract
View Paper
PDF
Monoblock low-pressure (LP) turbine rotor shaft forgings for nuclear power plants have been produced from up to 600 ton ingots. However, ingots greater than 600 tons are necessary to increase the generator capacity. Segregation, non-metallic inclusions, and micro porosities inevitably increase with the increase in ingot size. Manufacturing such massive ingots with high soundness is quite difficult. Thus, the development of 650 ton ingot production was carried out in 2010. The 650 ton ingot was dissected and investigated to verify its internal quality. The internal quality of the 650 ton ingot was found to be equal to that of 600 ton ingots. Subsequently, in 2011, we produced a 670 ton ingot, the world’s largest, to produce a trial LP rotor shaft forging with a diameter of 3,200 mm. Results show that the internal quality, mechanical properties, and heat stability are the same as LP rotor shaft forgings made from 600 ton ingots.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... oxide scale was thicker in the case of alloys 263 and 617; the alloy 740H samples possessed a thinner, more compact chromia scale. All alloys developed internal oxides along grain boundaries rich in Al/Ti. Chromium sulfides (verified with SEM-EDS and backscatter visualization), evident...
Abstract
View Paper
PDF
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 549-564, October 22–25, 2013,
... as cause for the cracking, especially as no cracks were found in the absence of hydrogen sulfide. The cracking occurred at pH values of lower than 7 at a temperature below 90°C. As a derived measure the parts where T24 material is used were excluded from the pickling process [8]. The second mechanism...
Abstract
View Paper
PDF
This paper explores the development and qualification of a bainitic-martensitic steel grade and its matching welding consumables for power plants operating under ultra-supercritical steam conditions (605/625°C and 300/80 bar). It provides insights into recent developments and offers practical considerations for handling this material (grade T24) from the perspective of both tubular component manufacturers and welding consumable producers. The paper is structured into three main sections: (1) Development and qualification of the T24 steel base material. (2) Development, qualification, and recommendations for welding consumables compatible with T24 steel. (3) Experiences during manufacturing and installation of components using T24 steel, concluding with key takeaways.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1025-1037, October 22–25, 2013,
... is a nickel-base, precipitation hardenable superalloy that offers a unique combination of high strength and creep resistance at elevated temperatures along with resistance to coal ash corrosion, oxidation, carburization and sulfidation. Alloy 740H is derivation of NIMONIC alloy 263. With its higher content...
Abstract
View Paper
PDF
The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC) boiler, which is the latest boiler design, currently under development. As with all high nickel alloys, welding of alloy 740H can be very challenging, even to an experienced welder. Weldability challenges are compounded when considering that the alloy may be used in steam headers, where critical, thick-section and stub-to-header weld joints are present. This paper is intended to describe the proper procedures developed over years of study that will allow for ASME code quality welds in alloy 740H with matching composition filler metals.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 714-731, October 22–25, 2013,
... are hard particles within the plastically deforming matrix and at some critical value of strain void formation occurs. In general, it has been reported that relatively large oxide and sulfide inclusions are more effective in the initiation of voids which grow by plastic deformation than small particles...
Abstract
View Paper
PDF
As long term laboratory creep data became available the original estimates of the allowable stresses for creep strength enhanced ferritic steels (CSEF) had to be reduced. Thus, even in properly processed steel, the long term performance and creep rupture strength is below that originally predicted from a simple extrapolation of short term data. One of the microstructural degradation mechanisms responsible for the reduction in strength is the development of creep voids. Nucleation, growth and inter linkage of voids also result in a significant loss of creep ductility. Indeed, elongations to rupture of around 5% in 100,000 hours are now considered normal for long term creep tests on many CSEF steels. This relatively brittle behaviour, and the associated creep void development, promotes burst rather than leak type fracture in components. Moreover, the existence of significant densities of voids further complicates in-service assessment of condition and weld repair of these steels. The present paper examines background on the nucleation and development of creep voids in 9 to 12%Cr martensitic steels and discusses factors affecting brittle behavior.