Skip Nav Destination
Close Modal
Search Results for
steam piping
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 248 Search Results for
steam piping
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
... Abstract Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated...
Abstract
View Paper
PDF
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 615-626, October 22–25, 2013,
... Abstract Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used...
Abstract
View Paper
PDF
Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used to achieve sufficient toughness in the weld. To relieve the internal stress in the welds and to stabilise their microstructures, a post weld heat treatment (PWHT) is commonly applied. The heat treatment conditions used for the PWHT have a significant effect on both the resulting microstructure and the creep behaviour of the welds. In this study, interrupted creep tests were carried out on two identical Grade 92 welds that had been given PWHTs at two different temperatures: 732°C and 760°C. It was found that the weld with the lower PWHT temperature had a significantly reduced stain rate during the creep test. In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT temperatures on the microstructure, initially the microstructures in the head portions of the two creep test bars were compared. This comparison was performed quantitatively using a range of electron/ion microscopy based techniques. It was apparent that in the sample subjected to the higher PWHT temperature, larger Laves phase particles occurred and increased matrix recovery was observed compared with the sample subjected to the lower PWHT temperature.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 919-929, October 25–28, 2004,
... metallurgical properties oxidation resistance steam pipes ultra supercritical power plants welding httpsdoi.org/10.31399/asm.cp.am-epri-2004p0919 Copyright © 2005 ASM International® 920 929 Copyright © 2004 ASM International. All rights reserved. 2004 ASM International ...
Abstract
View Paper
PDF
A new 12%Cr steel, VM12, has been developed with the combined strength and oxidation resistance characteristics desired for high-temperature applications. The steel increases chromium content by around 0.2% to improve oxidation properties while alloying with other elements such as cobalt, tungsten, and boron to meet a range of requirements, including extending fatigue life. The steel is designed to have the same creep strength as T/P92 but with better oxidation resistance due to the higher chromium content. It has about a 0.2% increase in mechanical properties compared to T/P92 steel. Results are presented for tubes and pipes cast with a variety of surface conditions. In addition, detailed results are provided on the effects of alloying elements on creep and oxidation resistance.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, October 15–18, 2024,
... steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal...
Abstract
View Paper
PDF
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... Abstract The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented...
Abstract
View Paper
PDF
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 72-85, August 31–September 3, 2010,
... and by optimizing the Cr content of the steels. An Fe-Ni based alloy, HR6W strengthened by the Fe2W type Laves phase is found to be a marginal strength level material with good ductility at high temperatures over 700°C and to be used for a large diameter heavy wall thick piping such as main steam pipe and hot...
Abstract
View Paper
PDF
Recent advances in materials technology for boilers materials in the advanced USC (A-USC) power plants have been reviewed based on the experiences from the strengthening and degradation of long term creep properties and the relevant microstructural evolution in the advanced high Cr ferritic steels. P122 and P92 type steels are considered to exhibit the long term creep strength degradation over 600°C, which is mainly due to the instability of the martensitic microstructure strengthened too much by MX carbonitrides. This can be modified by reducing the precipitation of VN nitride and by optimizing the Cr content of the steels. An Fe-Ni based alloy, HR6W strengthened by the Fe2W type Laves phase is found to be a marginal strength level material with good ductility at high temperatures over 700°C and to be used for a large diameter heavy wall thick piping such as main steam pipe and hot reheat pipe in A-USC plants, while Ni-Co based alloys such as Alloys 617 and 263 strengthened by a large amount of the y’ phase are found to be the high strength candidate materials for superheater and reheater tubes, although they are prone to relaxation cracking after welding and to grain boundary embrittlement during long term creep exposure. A new Ni based alloy, HR35 strengthened by a-Cr phase and other intermetallic phases has been proposed for piping application, which is specially designed for a good resistance to relaxation cracking as well as high strength and a good resistance to steam oxidation and fire-side corrosion at high temperatures over 700°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 448-459, October 21–24, 2019,
... Abstract Inconel 740H is one of the most promising candidate Ni-base superalloys for the main steam pipe of 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. After processing and welding in manufacturing plant in solution-annealed state, large components was commonly...
Abstract
View Paper
PDF
Inconel 740H is one of the most promising candidate Ni-base superalloys for the main steam pipe of 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. After processing and welding in manufacturing plant in solution-annealed state, large components was commonly suggested to have an extra aging treatment at 800 °C for 16 h, in order to obtain homogeneous γ′ precipitates. In this present work, creep tests and microstructure analyses were conducted on Inconel 740H pipe specimens under two different heat treatments to verify the necessity of aging process. Here we show that aging treatment has limited effect on the creep rupture life of Inconel 740H pipe. Both in grain interiors and along grain boundaries, crept specimens under two different heat treatments have the same precipitates. But the shape and distribution of γ′ in solution annealed sample is not as regular as the aged ones. Our results provide the underlying insight that aging treatment is not so necessary for the straight pipes if the on-site condition was hard to control. But for both groups of specimens, a small amount of h particles and some banded like M 23 C 6 were emerged during creep, which would be harmful to mechanical properties for the long run.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 409-417, October 15–18, 2024,
... Abstract Main steam control valves are crucial components in power plants, as they are the final elements in the steam piping system before the steam enters the turbine. If any parts of these valves become damaged, they can severely harm the steam turbines. Recently, power plants have been...
Abstract
View Paper
PDF
Main steam control valves are crucial components in power plants, as they are the final elements in the steam piping system before the steam enters the turbine. If any parts of these valves become damaged, they can severely harm the steam turbines. Recently, power plants have been required to operate under cyclical loading, which increases the risk of cracks in the control valve seats. This is due to the different rates of expansion between the Stellite surface and the underlying Grade 91 steel surface when exposed to high temperatures. To ensure a reliable power supply, power plants cannot afford long downtimes, making on-site service essential. This paper presents an on-site technique for post-weld heat treatment (PWHT) of Stellite seats. By using a heating pad arrangement and an induction heater, the required PWHT temperature of 740°C, as specified in the welding specification procedure (WPS), can be achieved. This method allows for on-site valve seat repair and can be applied to other power plants as well.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 683-691, October 25–28, 2004,
... for feedwater and steam piping systems in other power plants suggest a need for a comprehensive process of life management This paper proposes a process based upon the successful EPRI program for boiler tube failure reduction. Key to this process is a structure that fully confirms the damage or failure...
Abstract
View Paper
PDF
To obtain the maximum life for fossil power plant high energy piping systems requires a management process that goes beyond a maintenance response to discovered damage or problems. The catastrophic failure of a cold reheat piping system in 2003 and the ongoing damage reported for feedwater and steam piping systems in other power plants suggest a need for a comprehensive process of life management This paper proposes a process based upon the successful EPRI program for boiler tube failure reduction. Key to this process is a structure that fully confirms the damage or failure mechanism, that identifies the root cause for the mechanism, and that establishes short and long-term corrective actions for the damage. Finally, the process must be implemented through a cross-functional team of plant staff covering maintenance, operations, and engineering disciplines to assure the most complete and cost effective actions to prevent future damage.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
... superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy...
Abstract
View Paper
PDF
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 51-67, October 25–28, 2004,
...-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components...
Abstract
View Paper
PDF
Power generation technology selection is driven by factors such as cost, fuel supply security, and environmental impact. Coal remains a popular choice due to its global availability, but efficient, reliable, and cost-effective methods are essential. In Europe, efforts focus on advancing coal-fired steam power plants to ultrasupercritical conditions, with boilers and turbines now operating at up to 600°C. This has improved efficiency and maintained reliability comparable to subcritical plants. Orders are in detailed planning for plants exceeding 600°C, thanks to improved high-temperature steels for components like turbine rotors, casings, steam pipes, and boiler tubes, which undergo rigorous development and testing. Further efficiency gains are expected by increasing steam temperatures to over 700°C using nickel-based alloys. Test facilities are being built for pilot components, leading to a full demonstration plant. This systematic approach to materials development and proven design principles ensures operational reliability.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1014-1029, August 31–September 3, 2010,
... steel. The welds received post-weld heat-treatment (PWHT) in accordance with the requirements of the ASME Code. The objective of the work was to determine if the fracture toughness of the FCAW welds was acceptable for high-temperature steam piping. Toughness was measured using standard sized Charpy V...
Abstract
View Paper
PDF
The toughness of girth welds in 9Cr-1Mo-V and 9Cr-0.5Mo-V steel seamless pipe (ASME SA-335 Grades P91 and P92, respectively) made using the flux-cored arc welding (FCAW) process was evaluated. Electrodes from two different suppliers were used for production quality welding of each steel. The welds received post-weld heat-treatment (PWHT) in accordance with the requirements of the ASME Code. The objective of the work was to determine if the fracture toughness of the FCAW welds was acceptable for high-temperature steam piping. Toughness was measured using standard sized Charpy V-notch impact specimens. The specimens were oriented transverse to the weld seam with notch located approximately in the center of the weld metal and parallel to the direction of weld seam. Full-range (lower to upper shelf) Charpy impact energy and shear area curves were developed for each weld joint. These were used to estimate the temperatures corresponding to 30 ft-lb average impact energy. The estimated temperatures were well below the service temperature but were above the typical hydrostatic test temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1075-1086, October 15–18, 2024,
... Abstract This paper presents three recent example cases of cracking in Grade 91 steel welds in longer-term service in high temperature steam piping systems: two girth butt welds and one trunnion attachment weld. All the cases were in larger diameter hot reheat piping, with the service exposure...
Abstract
View Paper
PDF
This paper presents three recent example cases of cracking in Grade 91 steel welds in longer-term service in high temperature steam piping systems: two girth butt welds and one trunnion attachment weld. All the cases were in larger diameter hot reheat piping, with the service exposure of the welds ranging from approximately 85,000 to 150,000 hours. Cracking in all cases occurred by creep damage (cavitation and microcracking) in the partially transformed heat-affected zone (PTZ, aka Type IV zone) in the base metal adjacent to the welds. The location and morphology of the cracking are presented for each case along with operating conditions and potential contributors to the cracking, such as system loading, base metal chemical composition, and base metal microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1228-1239, October 15–18, 2024,
... Abstract The creep strength of the base metals and welded joints of ASME Grade 91 type steel under actual service conditions was investigated using long-term used materials in this study. Creep tests were conducted on the materials used for hot reheat or main steam piping at power plants...
Abstract
View Paper
PDF
The creep strength of the base metals and welded joints of ASME Grade 91 type steel under actual service conditions was investigated using long-term used materials in this study. Creep tests were conducted on the materials used for hot reheat or main steam piping at power plants. The remaining creep life of each material under actual service conditions was evaluated using the Larson-Miller parameter for the test result. Then, the creep life of each material under the service condition was estimated as a summation of the service time at the plants and the remaining creep life. The estimation results were useful for examining the validity of the life evaluation formula in the long-term region because it is extremely difficult to obtain creep rupture data under such conditions owing to the long test duration. The estimated creep lives were compared with creep life evaluation curves, which were regulated for Grade 91 type steel in Japan. Regarding the base metals, the estimation results suggest that Grade 91 pipe-type steel tends to exhibit a shorter life than the 99% confidence lower limit of the evaluation curve of the material. This finding indicated that the life evaluation formula for the Grade 91 type steel base metals should be reviewed. On the other hand, the estimation results suggest that the welded joints of Grade 91 type steel generally exhibit a longer life than the 99% confidence lower limit of the evaluation curve of the material, indicating that there is no need to review the life evaluation formula for the Grade 91 type steel welded joints.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1048-1059, October 21–24, 2019,
... of Alloy 617 was conducted, because stress relaxation cracking in the heat affected zone (HAZ) has actually been reported for repair welds in Alloy 617 steam piping in European A-USC field-testing. Solidification cracking susceptibilities of Alloy 617 were the highest; followed by HR35, Alloy 740 and Alloy...
Abstract
View Paper
PDF
The susceptibilities of hot cracking and reheat cracking of A-USC candidate Ni-based alloys were evaluated relatively by Trans-Varestraint testing and Slow Strain Rate Tensile (SSRT) testing. In addition, semi-quantitative evaluation of the stress relaxation cracking susceptibility of Alloy 617 was conducted, because stress relaxation cracking in the heat affected zone (HAZ) has actually been reported for repair welds in Alloy 617 steam piping in European A-USC field-testing. Solidification cracking susceptibilities of Alloy 617 were the highest; followed by HR35, Alloy 740 and Alloy 141, which were all high; and then by HR6W and Alloy 263, which were relatively low. In addition, liquation cracking was observed in the HAZ of Alloy 617. The reheat cracking susceptibilities of Alloy 617, Alloy 263, Alloy 740 and Alloy 141 were somewhat higher than those of HR6W and HR35 which have good creep ductility due to the absence of γ’ phase precipitates. A method to evaluate stress relaxation cracking susceptibility was developed by applying a three-point bending test using a specimen with a V-notch and finite element analysis (FEA), and it was shown that stress relaxation cracking of aged Alloy 617 can be experimentally replicated. It was proposed that a larger magnitude of creep strain occurs via stress relaxation during the three-point bending test due to a higher yield strength caused by γ’ phase strengthening, and that low ductility due to grain boundary carbides promoted stress relaxation cracking. The critical creep strain curve of cracking can be created by means of the relationship between the initial strain and the creep strain during the three-point bending tests, which were calculated by FEA. Therefore, the critical conditions to cause cracking could be estimated from the stress relaxation cracking boundary from of the relationship between the initial strain and the creep strain during the three-point bending test.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1330-1339, October 21–24, 2019,
... Abstract Type IV creep damage is a problem in high-temperature steam piping made of high chromium steel at thermal power plants, and a method for evaluating the remaining life is required. In this study, we considered that void’s initiation and growth can be expressed by initiation rate f...
Abstract
View Paper
PDF
Type IV creep damage is a problem in high-temperature steam piping made of high chromium steel at thermal power plants, and a method for evaluating the remaining life is required. In this study, we considered that void’s initiation and growth can be expressed by initiation rate f, growth rate h, and initiation start time t 1 , and that stress and TF affect f, h and t 1 . We also proposed the method to estimate f, h and t 1 by measuring the change of the distribution of radius of voids during creep test. The creep test conditions are (1) test temperature of 650 C, maximum principal stress σ 1 of 79.5MPa, and TF of 2.5 ~ 3.0, and (2) test temperature of 650C, maximum principal stress of 71.5MPa, and TF of 2.5 ~ 3.0. The influence of σ 1 to f, h and t 1 was quantified by comparing the result of test (1) and that of test (2).
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 787-799, August 31–September 3, 2010,
... Abstract Creep strength enhanced ferritic (CSEF) steels, particularly modified 9Cr steels Grade 91 and 92, are increasingly used in advanced coal-fired power plants for header and steam piping construction. While these materials typically enter service after receiving a standard high...
Abstract
View Paper
PDF
Creep strength enhanced ferritic (CSEF) steels, particularly modified 9Cr steels Grade 91 and 92, are increasingly used in advanced coal-fired power plants for header and steam piping construction. While these materials typically enter service after receiving a standard high-temperature normalizing treatment followed by lower temperature tempering to achieve optimal microstructure, practical situations like welding operations may expose components to additional heat treatment exceeding the Ac 1 , and potentially the Ac 3 , temperature before returning to tempering temperature. This research examines the effects of simulated post weld heat treatments (PWHT) on Grade 91 and 92 materials using dilatometer-controlled heating and cooling rates, with peak temperatures below Ac 1 , between Ac 1 and Ac 3 , and above Ac 3 , followed by heat treatment at 750°C for 2 hours. Hardness measurements revealed significant reduction when exceeding the Ac 1 temperature, while advanced electron microscopy, including electron back scatter diffraction, was employed to analyze changes in martensite laths and grain structure, along with detailed carbide size distribution analysis using both scanning and transmission electron microscopy. The findings are discussed in terms of how such PWHT overshoots might affect mechanical properties during high-temperature service.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1216-1227, October 15–18, 2024,
... are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment...
Abstract
View Paper
PDF
The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding chemical composition, only the Al, Cr, and Ni contents were systematically varied while keeping the contents of the other elements and heat treatment conditions constant. Regarding heat treatment, the normalizing and tempering temperatures were varied while keeping the contents of chemical components constant. The creep tests of materials were performed for approximately up to 50,000 h at 650°C. The creep strength of Grade 91 type steel decreased with increasing Al content under the test conditions of short-term to long-term range. On the other hand, the effect of Cr content on the creep life of Grade 91 type steel depended on the stress or time range, and the creep strength of the steel decreased at high Cr contents under test conditions of only the longterm range. No effect of Ni content on the creep life of the materials was observed in the test data obtained in this study. As creep tests are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment, the creep life of the materials tended to increase with increasing normalizing temperature or decreasing tempering temperature. The results obtained in this work indicate that within the scope of the material standards for Grade 91 type steel, the effect of chemical composition on creep life is greater than that of heat treatment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 981-989, October 21–24, 2019,
... in main steam is proposed [11], a calculating model for sampling of scale in main steam pipe is established, effects of different sampling conditions on sampling efficiency are studied and on-line detection technology of scale concentration based on magnetic coupling granularity detection [12] is proposed...
Abstract
View Paper
PDF
The oxide exfoliation is one of the main problems that cause the explosion of superheater or reheater, which threaten the safety of power plant units, but there is no direct test method of the particle concentration of the scales in high temperature steam. Based on the study of ferromagnetic and optical characteristics of scales, the technology and equipment were developed for on-line measurement based on magnetic sensitivity and granularity behavior. Through numerical simulation and dynamic simulation experiments of scale movement under high temperature and high pressure steam, calculating method of the particle concertation of scales in the main steam or reheated steam pipeline was retrieved by local sampling concentration.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 528-539, October 15–18, 2024,
... are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved...
Abstract
View Paper
PDF
The steam generation systems (SGS) of concentrated solar power (CSP) plants employ multiple heat exchangers arranged in series to convert thermal energy collected from the sun via a heat transfer fluid (HTF) to produce superheated steam in the Rankine cycle. Common CSP plant designs are based either on parabolic trough or central tower technology. The major Rankine cycle components consist of preheaters, evaporators, steam drums, superheaters, steam turbines, and water/air-cooled condensers, all connected through steel piping. For CSP plants capable of reheating the steam for improved efficiency, reheaters are also included in the Rankine cycle. In central tower design with directly heated water as the HTF, the receiver can also be considered part of the Rankine cycle. Operating experiences of CSP plants indicate that plant reliability is significantly impacted by failures in various components of the Rankine cycle. Many damage mechanisms have been identified, which include corrosion, thermal fatigue, creep, and stress corrosion cracking, among others. Much of the damage can be attributed to poor water/steam chemistry and inadequate temperature control. While damage in the Rankine cycle components is common, there is generally lack of comprehensive guidelines created specifically for the operation of these CSP components. Therefore, to improve CSP plant reliability and profitability, it is necessary to better understand the various damage mechanisms experienced by linking them to specific operating conditions, followed by developing a “theory and practice” guideline document for the CSP operators, so that failures in the Rankine cycle components can be minimized. In a major research project sponsored by the U.S. Department of Energy (DOE), effort is being undertaken by EPRI to develop such a guideline document exclusively for the CSP industry. This paper provides an overview of the ongoing DOE project along with a few examples of component failures experienced in the Rankine cycle.
1