Skip Nav Destination
Close Modal
Search Results for
steam pipelines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-14 of 14 Search Results for
steam pipelines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 981-989, October 21–24, 2019,
..., calculating method of the particle concertation of scales in the main steam or reheated steam pipeline was retrieved by local sampling concentration. ferromagnetic characteristics granularity magnetic sensitivity numerical simulation optical characteristics oxide scale steam pipelines...
Abstract
View Paper
PDF
The oxide exfoliation is one of the main problems that cause the explosion of superheater or reheater, which threaten the safety of power plant units, but there is no direct test method of the particle concentration of the scales in high temperature steam. Based on the study of ferromagnetic and optical characteristics of scales, the technology and equipment were developed for on-line measurement based on magnetic sensitivity and granularity behavior. Through numerical simulation and dynamic simulation experiments of scale movement under high temperature and high pressure steam, calculating method of the particle concertation of scales in the main steam or reheated steam pipeline was retrieved by local sampling concentration.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
... on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator...
Abstract
View Paper
PDF
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1351-1360, October 21–24, 2019,
... Abstract 9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can...
Abstract
View Paper
PDF
9-12%Cr martensitic steels can be applied to the next highest temperature components such as boiler tracts, steam pipelines and turbines of advanced ultra-supercritical power plants with steam temperatures of 650°C. New 10%Cr martensitic steels with high B and low N contents can be a worthy candidate for use in production because it has superior creep resistance. At the same time, resistance to cyclic and dynamic loads is very important. In this work, we studied the low cycle fatigue (LCF) properties at room and elevated (500-650°C) temperatures and Charpy impact toughness at temperatures ranging from -196…100°C of advanced 10% Cr martensitic steel with high B and low N contents. The effect of new alloying scheme and corresponding peculiarities of M 23 C 6 carbides on the low cycle fatigue resistance and impact toughness of the 10%Cr martensitic steel is analyzed. It is revealed that fine and densely distributed carbides has no effect on the fatigue resistance except for the slight improvement of fatigue life at small strain amplitudes and shift the ductile-brittle transition temperature (DBTT) to higher but satisfactory value of +10°C as compared to other high-chromium martensitic steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
... AND EXPERIMENTAL TESTS Materials The main steam pipe material is A335-P22. The ex-service weldment was removed from a pipe section in a main steam pipeline, after being service for more than 32 years, under an operating temperature of 540.6°C and an internal pressure of 18.27 MPa. The pipe has an outer diameter...
Abstract
View Paper
PDF
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 516-529, October 11–14, 2016,
... of a Steam Pipeline, Acta Polytech., vol. 52, no. 4, pp. 74 79, 2012. [19] R. Viswanathan, Life Prediction for Boiler Components, in Damage mechanisms and life assessment of high-temperature components, 2nd ed., ASM International, 1993, p. 497. [20] B. J. Cane, Remaining creep life estimation by strain...
Abstract
View Paper
PDF
The impression creep test method using a rectangular indenter has been well established and the applicability of the technique has been supported by the test data for a number of metallic materials at different temperatures and stresses. The technique has proved to be particularly useful in providing material data for on-site creep strength assessments of power plant components operating in the creep regime. Due to these reasons, “standard” assessment procedures using the impression testing method are needed in order for the technique to be more widely used. This paper will first address some key issues related to the use of the impression creep test method, involving the data conversion method, typical test types and validity of the test technique etc. Then some recommendations on a number of practical aspects, such as the basic requirements of test rigs, “standard” specimen geometry, indenter dimensions, sampling procedures for scoop samples, specimen preparation, temperature and loading control, and displacement measurement, are briefly addressed. Finally, applications of the test data to assist with the risk management and life assessment programme of power plant components, particularly those with service-exposed materials, using data obtained from scoop samples, are described. Proposals for future exploitation and for improvement of the technique are addressed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 60-73, October 22–25, 2013,
... Abstract Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam...
Abstract
View Paper
PDF
Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam temperature requires that the materials for the boiler pressure parts and steam turbine be upgraded to high-nickel alloys that are more expensive than alloys typically used in existing PC units. This paper explores the economics of A-USC units operating between 595°C and 760°C (1100°F to 1400°F) with no CO 2 removal and with partial capture of CO 2 at an emission limit of 454 kg CO 2 /MW-hr (1000 lb CO 2 /MW-hr) on a gross power basis. The goal of the paper is to understand if the improved efficiency of A-USC would reduce the cost of electricity compared to conventional ultra-supercritical units, and estimate the economically “optimal” steam temperature with and without CO 2 removal.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 53-59, October 22–25, 2013,
... in a mixing piece with relatively cold steam at about 390 °C, taken from the Low Temperature Superheater (LTSH) outlet link, to get steam at a temperature of approximately 540 °C, in order to return the steam flow into the hot reheat pipeline. The test loop is likely to be installed in 2014 and is planned...
Abstract
View Paper
PDF
India's current installed power generating capacity is about 225,000 MW, of which about 59% is coal based. It is projected that India would require an installed capacity of over 800,000 MW by 2032. Coal is likely to remain the predominant source of energy in India till the middle of the century. India is also committed to reducing the CO 2 emission intensity of its economy and has drawn up a National Action Plan for Climate Change, which, inter alia, lays emphasis on the deployment of clean coal technologies. With this backdrop, a National Mission for the Development of Advanced Ultra Supercritical Technology has been initiated. The Mission objectives include development of advanced high temperature materials, manufacturing technologies and design of equipment. A corrosion test loop in an existing plant is also proposed. Based on the technology developed, an 800 MW Demonstration A-USC plant will be established. Steam parameters of 310 kg/cm 2 , 710 °C / 720 °C have been selected. Work on selection of materials, manufacture of tubes, welding trials and design of components has been initiated. The paper gives details of India's A-USC program and the progress achieved.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
... Abstract Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F...
Abstract
View Paper
PDF
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 685-693, October 21–24, 2019,
... Abstract The fall-off of oxide scale with poor adhesion inside superheater/reheater tubes in boilers for (ultra) supercritical power unit is the main cause of accidents such as superheater/reheater blockage, tube explosion and solid particle erosion in the steam turbine which cause serious...
Abstract
View Paper
PDF
The fall-off of oxide scale with poor adhesion inside superheater/reheater tubes in boilers for (ultra) supercritical power unit is the main cause of accidents such as superheater/reheater blockage, tube explosion and solid particle erosion in the steam turbine which cause serious economic losses. However, there is still no method for testing and assessing the adhesion of oxide scale inside the tube. A method for testing the adhesion of corrosion products in tubes by spiral lines is proposed in this paper, and the accuracy of adhesion evaluation is improved by adopting the image recognition method.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... temperature in this area at full plant load is approximately 927°C (1700°F). Design consideration was to ensure personnel safety, unit operation, and unit reliability was not affected by the steam loop operation. Manual and motorized block valves were installed on all three pipelines on the test loop: supply...
Abstract
View Paper
PDF
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 377-387, October 11–14, 2016,
... alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing...
Abstract
View Paper
PDF
Austenitic and super-austenitic stainless steels are a critical component of the spectrum of high temperature materials. With respect to power generation, alloys such as Super 304H and NF709 span a gap of capability between ferritic and martensitic high chromium steels and nickel-based alloys in boiler tube applications for both conventionally fired boilers and heat-recovery steam generators (HRSG). This research explores a wrought version of a cast austenitic stainless steel, CF8C-Plus or HG10MNN, which offers promise in creep strength at relatively low cost. Various manufacturing techniques have been employed to explore the impact of wrought processing on nano-scale microstructure and ultimately performance, especially in high temperature creep. Transmission electron microscopy has been used to quantify and characterize the creep-strengthening particles examining the relationship between traditional melting and extrusion as compared to powder metallurgy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
... of this new variant of steel has resulted in 6 8% increase in efficiency leading to a better utilization of fossil fuel and a reduction in the amount of SOx, NOx and COx emission into the atmosphere [4]. Higher steam parameters put higher demands not only for steels used in boilers and pipelines but also...
Abstract
View Paper
PDF
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 405-415, October 21–24, 2019,
... alloys with longer creep life and better corrosion resistance [2-5]. Turbine rotor is a core 405 component of steam power plant. Compared with integrated casting and hot forging, welding is the most promising technique to fabricate turbine rotor with complex structure and large dimension because it can...
Abstract
View Paper
PDF
In the present study, the Inconel 617B superalloy welded trial rotor was fabricated by narrow gap tungsten inert gas (NG-TIG) welding and the effects of temperature on fracture toughness of its welded joint were investigated at 650 ℃ and 730 ℃. Fracture toughness (J0.2) of the base metal was much higher than that of the weld metal at the same temperature, which was attributed to its excellent macroscopical plasticity and the interactions of strain localization, misorientation, and coincidence site lattice (CSL) boundaries. For the base metal, the value of J0.2 was higher at 730 ℃ than at 650 ℃, resulting from the appreciable increase in ductility and decrease in strain localization as the temperature increased. For the weld metal, higher temperature (730 ℃) reduced strength but hardly improved plasticity, and the regions of high strain localization uniformly distributed in the weld metal, resulting in completely tearing the whole interface apart and lower fracture toughness of the weld metal.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 174-184, October 21–24, 2019,
... APPROACH Grade P22 steel (Table 1) was supplied in the form of a 200mm diameter steam pipe. Creep tests were conducted under constant load (initial stress = 150MPa) in an air atmosphere at 600 C. Uniaxial tensile specimens were tested in the solution treated condition and in the simulated postweld heat...
Abstract
View Paper
PDF
The creep strength and ductility of Grade P22 steel (2¼ Cr) was measured at 600°C under standard uniaxial tensile conditions at 150MPa. Test specimens were prepared by solution heat treatment at austenitization temperatures ranging from 900°C - 1200°C followed by normalization at 900°C before continuous air cooling to room temperature. In addition to specimens tested in the solution treated state, creep tests were also performed after tempering. The variable austenitization temperatures gave rise to different prior austenite grain (PAG) sizes, which in turn influenced the crystallographic packet and block boundary misorientation angle distribution. The latter parameters were measured using electron backscattered diffraction which also allowed partial reconstruction of the PAG boundaries. The time to creep failure at 600°C increased as function of PAG size up to approximately 70µm, but significantly decreased when the average prior austenite grain size measured approximately 108 µm. However, the minimum creep rate decreased even up to the largest PAG size with corresponding decrease in creep ductility. The stability of the crystallographic packet and block boundaries influences the high strength-low ductility for the large PAGs in comparison to the dominant effect of PAG boundaries at the smallest grain size where extensive recovery and recrystallization reduces creep strength.