Skip Nav Destination
Close Modal
Search Results for
solvus temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 29
Search Results for solvus temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 506-512, October 21–24, 2019,
... to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop...
Abstract
View Papertitled, Influence of γ′ Morphology on Hot Workability of Alloy U520 below the γ′-<span class="search-highlight">Solvus</span> <span class="search-highlight">Temperature</span>
View
PDF
for content titled, Influence of γ′ Morphology on Hot Workability of Alloy U520 below the γ′-<span class="search-highlight">Solvus</span> <span class="search-highlight">Temperature</span>
The relationship between the hot workability and the precipitation morphology of γ′ phase in the Alloy U520 was examined with a focus on the presence of γ′-nodule. To change the morphology of γ’ phase, forged bars of the Alloy U520 were solution treated followed by cooling process with the cooling rates of 5~100 K/h. After the heat treatment, both γ’ phases of intragranular particle and nodule along grain boundaries were observed, and the both sizes increased by slowing down the cooling rate. That is, the area fraction of γ’-nodule increased from about 0.1 % in the sample cooled at 100 K/h to about 70 % at 5 K/h. In Gleeble tension test, the slow-cooled samples basically exhibited higher ductility than water-quenched samples below the γ′-solvus temperature. However, the ductility was maximized in the sample cooled at 20 K/h, and excessive decrease of cooling rate resulted in a drop in ductility. EBSD analysis revealed that dynamic recrystallization (DRX) was often occurred in grain interior but suppressed at γ′-nodule area, indicating that presence of γ′-nodule had a negative influence on hot workability at subsolvus temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 470-478, October 21–24, 2019,
... rate condition range. In the P/M material, melting of grain boundaries occurred at super solvus temperature conditions. Large PPB acts as nucleation site of voids at higher strain rate conditions. Precipitation strengthening by γ’ phase degrades deformability at sub solvus temperature conditions...
Abstract
View Papertitled, Effect of Prior Particle Boundary on Deformability of Powder Processed Turbine Disk Alloy
View
PDF
for content titled, Effect of Prior Particle Boundary on Deformability of Powder Processed Turbine Disk Alloy
The powder metallurgy (P/M) process has been applied to a high strength turbine disk alloy. It is known that P/M alloys show characteristic microstructures such as prior powder boundaries (PPB) compared to microstructures of conventional cast and wrought (CW) alloys. High temperature tensile tests were conducted on CW and P/M processed alloy720Li in order to reveal the effect of temperature and strain rate on deformation behavior and to demonstrate the effect of microstructure derived from P/M process on deformability. The fracture mode of the P/M material changed from grain interior fracture to fracture around large PPB with an increment of strain rate. In addition, samples ruptured at higher temperature showed grain boundary fracture regardless of strain rate. On the other hand, the CW material showed good deformability with chisel point fracture in the entire temperature and strain rate condition range. In the P/M material, melting of grain boundaries occurred at super solvus temperature conditions. Large PPB acts as nucleation site of voids at higher strain rate conditions. Precipitation strengthening by γ’ phase degrades deformability at sub solvus temperature conditions. However, deformability near the solvus temperature and low strain rate condition in as HIPed P/M material increased with fine grain size distribution in spite of the presence of large grains resulting from PPB.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
... in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous...
Abstract
View Papertitled, Grain Boundary Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
View
PDF
for content titled, Grain Boundary Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 441-447, October 21–24, 2019,
... Abstract The behavior of strain-induced abnormal grain growth (AGG) in superalloy 718 has been investigated using compression testing and subsequent heat treatment below the d-phase solvus temperature of 980 °C. The nuclei of AGG grains were slightly newly recrystallized grains by a nucleation...
Abstract
View Papertitled, Generation Behavior of Abnormally Large Grain in Superalloy 718
View
PDF
for content titled, Generation Behavior of Abnormally Large Grain in Superalloy 718
The behavior of strain-induced abnormal grain growth (AGG) in superalloy 718 has been investigated using compression testing and subsequent heat treatment below the d-phase solvus temperature of 980 °C. The nuclei of AGG grains were slightly newly recrystallized grains by a nucleation because small grains without dislocation was observed in the as- deformed microstructure. AGG was caused by the difference in intragranular misorientation (related to the stored strain energy in a grain) between dynamic recrystallized grains and deformed matrix. The initiation of AGG was retarded with decreasing plastic strain and produced microstructures consisted of larger grains having more complex morphology. It was observed that grain boundary migrated locally in the direction perpendicular to, or mainly in the direction parallel to the S3 {111} twin boundaries along with the formation of high-order twins. As a result of multiple twinning, AGG grains seemed to evolve with the growing directions changed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 386-392, August 31–September 3, 2010,
... performed. 3. Results Figure 1 shows the correlation between the phase solvus temperature and the phase fraction at 700°C with conventional high precipitation-strengthened Ni-base alloys. It is clear that as the phase precipitates increase, the solvus temperature of the alloy increases. Alloys...
Abstract
View Papertitled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
View
PDF
for content titled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
A new Ni-base superalloy has been developed for Advanced Ultra Super Critical (A-USC) power plants operating above 750°C, targeting reduced CO 2 emissions through improved efficiency. While existing research focuses on 700°C-class materials, this study presents a novel alloy design for higher-temperature applications. Using the CALPHAD method, a prototype alloy (Ni-23Co-18Cr-8W-4Al-0.1C) was developed by eliminating Ti, Nb, and Ta to improve hot-workability while maintaining strength. The resulting alloy demonstrates twice the creep strength of Nimonic 263, with an estimated 10 5 h steam turbine creep resistance temperature of 780°C, marking a significant advancement in A-USC material capabilities.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
... Additions Thermodynamic calculations predicted that third element additions, such as W, Mo, and Ti, would lower the solvus temperature (a full dissolution temperature of Fe2Nb Laves phase into the bcc-Fe matrix) without reducing the amount of Laves phase at 700°C. As shown in Fig. 4, a large amount of Laves...
Abstract
View Papertitled, Development of High Cr Containing FeCrAl Alloys for Fossil Energy Structural Applications
View
PDF
for content titled, Development of High Cr Containing FeCrAl Alloys for Fossil Energy Structural Applications
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 904-913, October 21–24, 2019,
... on the dual two-phase Ni3Al and Ni3V intermetallic alloys to which additives X were added, it was shown that the morphology of the primary Ni3Al precipitates depends on the solvus temperature, Ts of the A1 (J phase field at which the primary Ni3Al phase is precipitated when temperature falls [6...
Abstract
View Papertitled, Effect of Heat Treatment on Microstructure and Mechanical Properties of Dual Two-Phase Ni 3 Al and Ni 3 V Intermetallic Alloys
View
PDF
for content titled, Effect of Heat Treatment on Microstructure and Mechanical Properties of Dual Two-Phase Ni 3 Al and Ni 3 V Intermetallic Alloys
So-called Ni base dual two-phase intermetallic alloys are composed of primary Ni 3 Al (L1 2 ) phase precipitates among eutectoid microstructures consisting of the Ni 3 Al and Ni 3 V (D0 22 ) phases. In this article, microstructural refinement of an alloy with a nominal composition of Ni 75 Al 10 V 15 (in at.%) was attempted by various heat treatment processes. When the alloy was continuously cooled down after solution treatment, fine and cuboidal Ni 3 Al precipitates were developed by rapid cooling while coarse, rounded and coalesced Ni 3 Al precipitates were developed by slow cooling. When the alloy was isothermally annealed at temperatures above the eutectoid temperature, the morphology of the Ni 3 Al precipitates changed from fine and cuboidal one to large and rounded one with increase in annealing time. When the alloy was annealed at temperatures below the eutectoid temperature, the Ni 3 Al precipitates were grown keeping cuboidal morphology. The morphological change from the cuboidal to rounded Ni 3 Al precipitates was induced by the transition from the growth driven by elastic interaction energy between the precipitate and matrix to that by the surface energy of the precipitate. Fine and cuboidal Ni 3 Al precipitates generally resulted in high hardness.
Proceedings Papers
Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
... of strengthening second-phase (Laves phase) precipitation in the BCC-Fe matrix while limiting the BCC-solvus temperature to lower than 1200°C [12]. Computational thermodynamics tools (JMatPro v.9 with Fe database and Thermo-Calc with TCFE9) were used to guide the alloy composition range and calculate the BCC...
Abstract
View Papertitled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
View
PDF
for content titled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
... to occur at high temperatures, whereas discontinuous precipitation occurs at low temperatures. The boundary temperature at which the precipitation reaction changes is approximately the solvus temperature, and thus it has been suggested that phase precipitation has a significant influence on discontinuous...
Abstract
View Papertitled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
View
PDF
for content titled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
... in the alloy to give a range of possible solvus temperatures and liquidus temperatures. Coupled thermodynamic and kinetic calculations were undertaken to determine how the chemical composition varied between the coating and the substrate as a function of time and temperature of exposure. The initial...
Abstract
View Papertitled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
View
PDF
for content titled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 74-87, February 25–28, 2025,
... was carried out at a pressure of 100 MPa (14.5 ksi) in already recrystallized material at a temperature of 1120°C (2050°F) for 4 hours, followed by a recrystallization (HT2) super-solvus cycle. 76 Figure 1: Comparison of two different heat treatments in ABD-900AM. Microstructural Characterization and High...
Abstract
View Papertitled, Acceleration of Material Acceptance and Industry Adoption of an Additively Manufactured Nickel-base Superalloy
View
PDF
for content titled, Acceleration of Material Acceptance and Industry Adoption of an Additively Manufactured Nickel-base Superalloy
The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines and more recently, hot-section components have been fabricated using AM nickel-base superalloys, which have shown substantial benefits. This paper will discuss and summarize extensive studies led by EPRI in a novel AM nickel-base superalloy (ABD·900-AM). A comprehensive high temperature creep testing study including >67,000 hours of creep data concluded that ABD-900AM shows improved properties compared to similar ~35% volume fraction gamma prime strengthened nickel-base superalloys fabricated using additive methods. Several different creep mechanisms were identified and various factors influencing high temperature behavior, such as grain size, orientation, processing method, heat treatment, carbide structure, chemistry and porosity were explored. Additional studies on the printability, recyclability of powder, wide range of process parameters and several other factors have also been studied and results are summarized. A summary on the alloy -by-design approach and accelerated material acceptance of ABD-900AM through extensive testing and characterization is further discussed. Numerous field studies and examples of field use cases in ABD-900AM are also evaluated to showcase industry adoption of ABD-900AM.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 295-303, October 11–14, 2016,
...) is located on the edge of these precipitates. Cracks also go through some of NiAl precipitates as shown in Figure 4b (indicated by a yellow arrow). The NiAl has a solvus temperature around 800°C in this alloy system according to simulation using JMatPro software. The NiAl is relatively soft when creep tested...
Abstract
View Papertitled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
View
PDF
for content titled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
Alumina-forming austenitic stainless steels (AFAs) are potential materials for boiler/steam turbine applications in next generation fossil fuel power plants. They display a combination of good high temperature creep strength, excellent oxidation resistance and low cost. A recently-developed AFA alloy based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%) shows better creep performance than a commercially-available Fe-based superalloy. In this paper we used scanning electron microscopy and transmission electron microscopy to study the fracture surfaces and cracking behavior in relation to the precipitates present in creep failure samples of this alloy tested at either 750°C/100 MPa or 700°C/170 MPa. It was found that most cracks are formed along the grain boundaries with precipitate-free zones beside the grain boundaries potentially providing the path for propagation of cracks.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 402-412, October 3–5, 2007,
... of long term (2×105hrs) service of USC power plants, neither 12%Cr steels nor advanced modified 9-12%Cr steels can meet the strict demand. In consideration of excellent corrosion resistance and high stress-rupture strength at high temperatures, the premium quality high strength Nimonic 80A has been...
Abstract
View Papertitled, The Application of Ni-Base Alloy Nimonic 80A for Buckets of USC Steam Turbine in China
View
PDF
for content titled, The Application of Ni-Base Alloy Nimonic 80A for Buckets of USC Steam Turbine in China
Nimonic 80A, a Ni-base superalloy mainly strengthened by Al and Ti to form γ'-Ni 3 (Al, Ti) precipitation in Ni-Cr solid solution strengthened austenite matrix, has been used in different industries for more than half century (especially for aero-engine application). In consideration of high strengths and corrosion resistance both Shanghai Turbine Company (STC) has adopted Nimonic 80A as bucket material for ultra-super-critical (USC) turbines with the steam parameters of 600°C, 25MPa. First series of two 1000MW USC steam turbines made by Shanghai Turbine Co. were already put in service on the end of 2006. Large amount of Nimonic 80A with different sizes are produced in Special Steel Branch of BAOSTEEL, Shanghai. Vacuum induction melting and Ar protected atmosphere electro-slag remelting (VIM+PESR) process has been selected for premium quality high strength Nimonic 80A. For higher mechanical properties the alloying element adjustment, optimization of hot deformation and heat treatment followed by detail structure characterization have been done in this paper. The Chinese premium quality high strength Nimonic 80A can fully fulfill the USC turbine bucket requirements.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 592-599, February 25–28, 2025,
... Properties Modeled in Design. Material Property Precipitation phase fraction Ductile-to-brittle transformation temperature (DBTT) Effective diffusivity Matrix-precpitate misfit Precipitate solvus Reason Primary strengthening mechanism Ensure room temperature ductility Creep modeling parameter Creep modeling...
Abstract
View Papertitled, Innovative Design of Advanced Niobium-Based Alloys for Extreme High-<span class="search-highlight">Temperature</span> Applications
View
PDF
for content titled, Innovative Design of Advanced Niobium-Based Alloys for Extreme High-<span class="search-highlight">Temperature</span> Applications
The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 143-154, October 22–25, 2013,
... annealing treatment followed by quenching and then a two-stage precipitation treatment with air cooling to achieve optimum mechanical properties [1, 2]. The solution annealing temperature is designed to be above the solvus of M23C6 to make the material soft and ductile [2]. The first precipitation treatment...
Abstract
View Papertitled, Microstructural Evolution in Cast Haynes 282 for Application in Advanced Power Plants
View
PDF
for content titled, Microstructural Evolution in Cast Haynes 282 for Application in Advanced Power Plants
A global movement is pushing for improved efficiency in power plants to reduce fossil fuel consumption and CO 2 emissions. While raising operating temperatures and pressures can enhance thermal efficiency, it necessitates materials with exceptional high-temperature performance. Currently, steels used in power plants operating up to 600°C achieve efficiencies of 38-40%. Advanced Ultra Supercritical (A-USC) designs aim for a significant leap, targeting steam temperatures of 700°C and pressures of 35 MPa with a lifespan exceeding 100,000 hours. Ni-based superalloys are leading candidates for these extreme conditions due to their superior strength and creep resistance. Haynes 282, a gamma prime (γ′) precipitation-strengthened alloy, is a promising candidate for A-USC turbine engines, exhibiting excellent creep properties and thermal stability. This research investigates the microstructural evolution in large, sand-cast components of Haynes 282. Microstructure, referring to the arrangement of grains and phases within the material, significantly impacts its properties. The research examines the alloy in its as-cast condition and after various pre-service heat treatments, aiming to fully identify and quantify the microstructural changes. These findings are then compared with predictions from thermodynamic equilibrium calculations using a dedicated Ni alloy database. The research reveals that variations in heat treatment conditions can significantly affect the microstructure development in Haynes 282, potentially impacting its mechanical properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 621-627, October 21–24, 2019,
... precipitation at 1023 K (750oC) at times up to 7,000 hours. 2. 1173 K (900oC) was at or near the and solvus temperatures, as very little or was present upon quenching from 1173 K. 3. Useful microstructures containing and could be produced at 1073 K (800oC) and 1123 K (850oC), as explained below. 623 Figure 3...
Abstract
View Papertitled, Effects of Eta Phase on Creep Performance of the Nickel-Base Superalloy 263
View
PDF
for content titled, Effects of Eta Phase on Creep Performance of the Nickel-Base Superalloy 263
In wrought nickel-base alloys used at elevated temperatures for extended periods of time, it is commonly observed that unwanted phases may nucleate and grow. One such phase is the eta phase, based on Ni 3 Ti, which is a plate-shaped precipitate that nucleates at the grain boundaries and grows at the expense of the strengthening gamma prime phase. In order to study the effects of eta phase on creep performance, Alloy 263 was modified to contain 3 different microstructures: standard (contains gamma prime); aged (contains gamma prime and eta); and modified (contains only eta and no gamma prime). These microstructures were then creep tested in the range of 973-1123 K (700-850°C). An extensive test matrix revealed that the eta-only modified alloy had creep rupture strengths within 10% of the standard alloy even though this alloy had no strengthening gamma prime precipitates. It also exhibited superior creep ductility. A preliminary test matrix on the aged material containing eta and gamma prime prior to the creep tests revealed that the performance of this microstructure was generally between that of the standard alloy (best) and the eta-only alloy (worst). The aged material exhibited far superior creep ductility. These results suggest that the presence of the eta phase may not be deleterious to creep ductility, and in fact, may enhance it.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 107-118, October 3–5, 2007,
... consisting of 1010°C (1850°F)/2 hrs./AC + 788°C (1450°F)/8 hrs./AC. The first step is carried out at a temperature above the gamma-prime solvus temperature of 997°C(1827°F) primarily to form M23C6 carbides at the grain boundaries in the preferred morphology to resist grain boundary sliding during creep...
Abstract
View Papertitled, Materials Solutions for Advanced Steam Power Plants
View
PDF
for content titled, Materials Solutions for Advanced Steam Power Plants
Significant research efforts are underway in Europe, Japan, and the U.S. to develop the technology to increase the steam temperature in fossil power plants in order to achieve greater efficiency and reduce the amount of greenhouse gases emitted. The realization of these advanced steam power plants will require the use of nickel-based superalloys having the required combination of high-temperature creep strength, oxidation resistance, thermal fatigue resistance, thermal stability, and fabricability. Haynes 230 and 282 alloys are two materials that meet all of these criteria. The metallurgical characteristics of each alloy are described in detail, and the relevant high-temperature properties are presented and discussed in terms of potential use in advanced steam power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 407-417, October 11–14, 2016,
... annealing. The solvus temperature of the NbCrN phase in austenitic stainless steels was reported to be between 1250 and 1350°C, depending on the steel composition 2 . Z-phase particles formed short rods elongated in the [001]Z direction. This is in accordance with the minimum directional mismatch, but some...
Abstract
View Papertitled, Creep Behavior and Microstructure Evolution in AISI 316LN + 0.1 Wt.% Nb Steel at 600 and 625°C
View
PDF
for content titled, Creep Behavior and Microstructure Evolution in AISI 316LN + 0.1 Wt.% Nb Steel at 600 and 625°C
The paper deals with microstructural evolution in the AISI 316LN + 0.1 wt.% Nb steel during long-term creep exposure at 600 and 625°C. The following minor phases formed: Z-phase (NbCrN), M 23 C 6 , M6X (Cr3Ni2SiX type), η-Laves (Fe2Mo type) and σ-phase. M6X gradually replaced M 23 C 6 carbides. Primary Z-phase particles were present in the matrix after solution annealing, while secondary Z-phase particles formed during creep. Precipitation of Z-phase was more intensive at 625°C. The dimensional stability of Z-phase particles was excellent and these particles had a positive effect on the minimum creep rate. However, niobium also accelerated the formation and coarsening of σ-phase, η-Laves and M6X. Coarse particles, especially of σ-phase, facilitated the development of creep damage, which resulted in poor long-term creep ductility.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 220-230, October 3–5, 2007,
.... Thermodynamic calculation (Fig. 7) reveals that the equilibrium phases above 600oC include , , MC and M23C6, which were observed in the alloy, and phase as well, which was not observed and may form after longer exposure time. The liquidus, solidus, , and solvus temperatures of the alloy are about 1369...
Abstract
View Papertitled, A New Improvement of Inconel Alloy 740 for USC Power Plants
View
PDF
for content titled, A New Improvement of Inconel Alloy 740 for USC Power Plants
A new nickel-base superalloy, Inconel alloy 740, is being developed for ultra-supercritical (USC) boiler applications operating above 750°C, designed to meet critical requirements for long-term high-temperature stress rupture strength (100 MPa for 10 5 hours) and corrosion resistance (2 mm/2 × 10 5 hours). Experimental investigations revealed key structural changes at elevated temperatures, including γ coarsening, γ' to η transformation, and G phase formation. To enhance strengthening effects and structural stability, researchers conducted a systematic optimization process based on thermodynamic calculations, implementing small adjustments to several alloying elements and designing modified alloy compositions. Comprehensive testing examined the long-term structural stability of these modifications, with investigations conducted up to 5,000 hours at 750 and 800°C, and 1,000 hours at 850°C. Mechanical property and oxidation resistance tests compared the modified alloys with the original Inconel alloy 740, yielding preliminary results that demonstrate minimal modifications can improve stress rupture strength while maintaining corrosion resistance. Microstructural examinations further confirmed the enhanced thermal stability of the modified alloy, positioning Inconel alloy 740 as a promising candidate for USC boiler applications at 750°C or higher temperatures.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
... a stable phase, as per the design requirements, with an approximate solvus temperature of 1040 °C. Figure 3: Calculated phase diagram for the down-selected alloy 'ABD®-850AM'. Phases of predicted mole fraction less than 0.01 are shown separately in the inset. EXPERIMENTAL METHODOLOGY The newly isolated...
Abstract
View Papertitled, Design of High-<span class="search-highlight">Temperature</span> Superalloys for Additive Manufacturing
View
PDF
for content titled, Design of High-<span class="search-highlight">Temperature</span> Superalloys for Additive Manufacturing
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
1