Skip Nav Destination
Close Modal
Search Results for
solid solution treatment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 187
Search Results for solid solution treatment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1136-1145, October 25–28, 2004,
... of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type...
Abstract
View Papertitled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
View
PDF
for content titled, Improvement in Creep Strength and Impact Toughness of High Cr Heat Resistant Steel based on Ferrite Matrix
Effects of Ni content and heat treatment condition on impact toughness and creep strength of precipitation strengthened 15Cr ferritic steels were investigated in order to discuss a possibility of improvement in both mechanical properties. Both creep strength and impact toughness of the developing steels were improved drastically by solid solution treatment with water quenching. However, an addition of Ni reduced the long-term creep strength of the steels, though Ni was effective in improvement in impact toughness. It was found that water quenching suppressed formation of coarse block type particles and precipitate free zones around them, and precipitation of plate type fine particles and thermal stability of them within ferrite phase were promoted by solid solution treatment with water quenching. However, martensite phase with sparsely distributed coarse block type particles were formed in the Ni added steels, and such microstructure reduced the precipitation strengthening effect slightly. On the other hand, increase in impact values of the steel indicated no relation to volume fraction of martensite phase. It was supposed that the impact toughness of ferrite phase itself was improved by solid solution treatment and addition of Ni.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 715-725, October 21–24, 2019,
... conclusions. (1) The tube bending was not performed in accordance with ASME Code requirements—a solid-solution heat treatment was not performed after cold working. (2) The hardness at the elbow is greater than 260 HV, exceeding the ASME code limit. (3) The sensitization was 19%, showing a performance...
Abstract
View Papertitled, Root Cause Analysis of Boiler Final Superheater Bending Tube Failure
View
PDF
for content titled, Root Cause Analysis of Boiler Final Superheater Bending Tube Failure
The broken elbow of the final superheater tube (ASME SA213 TP304H) from a coal-fired power plant was evaluated. The root causes were identified by metallographic observation, sensitization evaluation, hardness measurement, and EBSD analysis. The analysis results reached the following conclusions. (1) The tube bending was not performed in accordance with ASME Code requirements—a solid-solution heat treatment was not performed after cold working. (2) The hardness at the elbow is greater than 260 HV, exceeding the ASME code limit. (3) The sensitization was 19%, showing a performance degradation. (4) There are no obvious corrosion elements in the oxide layers of the cracks. (5) Metallographic microstructure analysis shows that there are many intergranular cracks and carbides such as Cr-rich phase and Fe-Cr are precipitated at the grain boundaries, ultimately resulting in strain-induced precipitation hardening damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 842-851, October 21–24, 2019,
.... The so-called MARBN concept (Martensitic steel with defined Boron/Nitrogen relation) provides increased creep rupture strength due to higher solid solution strengthening and improved microstructural stability. The major improvement is the reduction of type IV cracking in welded joints, which shifts...
Abstract
View Papertitled, Welding and Foundry Processing of MARBN Cast Components
View
PDF
for content titled, Welding and Foundry Processing of MARBN Cast Components
Advanced martensitic 9% chromium steels have been identified as the most favored group of materials for high temperature applications in thermal power plants. To extend the temperature range of martensitic steels up to 650°C large effort was put on the development of new alloy concepts. The so-called MARBN concept (Martensitic steel with defined Boron/Nitrogen relation) provides increased creep rupture strength due to higher solid solution strengthening and improved microstructural stability. The major improvement is the reduction of type IV cracking in welded joints, which shifts the focus to the creep rupture strength of the weld metal. This paper illustrates the process experience of the steel foundry for production of heavy cast components in latest state of the art 9-12%Cr-MoCoVNbNB-alloyed cast steel grades and the newest state of development and prototype components in MARBN cast steel grades. Metallurgy, solidification, heat treatment and welding are main items to be considered for development of new, complex steel grades for foundry processing with the help of empiric processing in test programs and thermo-physical simulation. As welding is an essential processing step in the production of heavy steel cast components a good out-of-position weldability is required. Moreover a stress-relieve heat-treatment takes place subsequently after welding for several hours. This contribution also deals with the development of matching welding consumables for the production of heavy cast components and discusses the challenges of defining appropriate welding and heat treatment parameters to meet the requirements of sufficient strength and toughness at ambient temperature. Additionally, first results of creep rupture tests are presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 217-226, October 21–24, 2019,
... with fine sizes during creep. No depletion of Re and Co from the solid solution during creep was revealed whereas W content decreased from 3 to 1 wt.% for first 500 h of creep. Reasons of improved creep as well as mechanisms of grain boundary pinning by precipitates are discussed. austenite...
Abstract
View Papertitled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
View
PDF
for content titled, Creep Behavior and Microstructure of a Prospective Re-Containing 10%Cr-3%Co-3%W Martensitic Steel
9-10%Cr-3%Co martensitic steels are the prospective materials for elements of boilers, tubes and pipes for fossil power plants which are able to work at ultra-supercritical parameters of steam (T=620-650°C, P=25-30 MPa). The effect of creep on the microstructure of the 10 wt.%Cr-3Co- 3W-0.2Re martensitic steel was investigated in the condition of 650°C and an applied stress of 140 MPa, time to rupture was more than 8500 h. Previously, this steel was subjected to the normalizing at 1050°C and tempering at 770°C. This heat treatment provided the hierarchical tempered martensite lath structure with the mean size of prior austenite grains of 59 μm and with high dislocation density (2×10 14 m -2 ) within martensitic laths. Boundary M 23 C 6 and M 6 C carbides and randomly distributed within matrix Nb-rich MX carbonitrides were detected after final heat treatment. The addition of Re in the steel studied positively affected creep at 650°C/140 MPa and stabilized the tempered martensite lath structure formed during 770°C-tempering. The formation of the subgrains in the gage section was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase with fine sizes during creep. No depletion of Re and Co from the solid solution during creep was revealed whereas W content decreased from 3 to 1 wt.% for first 500 h of creep. Reasons of improved creep as well as mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 803-811, October 21–24, 2019,
... by heat-treatment in the a + b phase field. The a2-Ti3Al precipitates formed by the aging treatment. 3. Solid solution hardening was obtained by addition of Zr, Si and Al. The solid solution hardening effect of Si was larger than that of Zr. The larger misfit of the atomic radius caused larger solid...
Abstract
View Papertitled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
View
PDF
for content titled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
Ti alloys are used as compressor blades and disks in jet engines due to their high specific strength and good oxidation resistance at operation temperature. However, Ti alloys cannot be used above 600 °C because creep properties and oxidation resistance deteriorate. To overcome the above problems, the effect of alloying element on oxidation resistance was investigated and it was found that Sn deteriorated oxidation resistance and Nb improved oxidation resistance. Then, we have attempted to design new Ti alloys without Sn, but including Nb because Nb improved oxidation resistance. To expect solid-solution hardening, Zr was also added to the alloys. In this study, the creep behavior of Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si alloys was investigated. The creep test was performed at temperature range between 550 and 650 °C and stress range between 137 and 240 MPa. The stress exponent and the activation energy for creep were analyzed using an Arrhenius equation. The stress exponent was 5.9 and 3.4, and the activation energy was 290 and 272 kJ/mol for Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si, respectively. This indicates the creep deformation mechanism is dislocation (high-temperature power law) creep governed by lattice diffusion.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 420-427, October 25–28, 2004,
... of sulfur states in the steel. One is in atomic sulfur state as a solid solution, and the other is in sulfide state as a precipitate. However, it still remains unclear which sulfur state contributes largely to the improvement of the steam oxidation resistance of the steels. In order to elucidate the sulfur...
Abstract
View Papertitled, Dependence of High-Temperature Steam Oxidation Resistance on the Stability of the Chromium Sulfide in High-Chromium Heat-Resistant Steels
View
PDF
for content titled, Dependence of High-Temperature Steam Oxidation Resistance on the Stability of the Chromium Sulfide in High-Chromium Heat-Resistant Steels
The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities of sulfur states in the steel. One is in atomic sulfur state as a solid solution, and the other is in sulfide state as a precipitate. However, it still remains unclear which sulfur state contributes largely to the improvement of the steam oxidation resistance of the steels. In order to elucidate the sulfur state operated more effectively in improving the oxidation resistance, the steam oxidation resistance was investigated with high chromium ferritic steels, Fe-10mass%Cr-0.08mass%C-(0~0.015)mass%S, with controlling the sulfur states in them by proper heat treatments. From a series of experiments, it was found that the sulfide state played a more important role in improving the steam oxidation resistance than the atomic sulfur state. Furthermore, this sulfur effect worked significantly in the steam oxidation test performed at the temperatures above 873K which corresponded to the temperature for the chromium sulfide to dissolve and instead for the chromium oxide to form in the steels. This result indicates that the beneficial effect of sulfur in improving the steam oxidation resistance is related closely to the sulfide stability against the oxide in the steels.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 402-412, October 3–5, 2007,
... rotary forging and hot rolling respectively. (a) (b) Fig. 6 Grain structure of Nimonic 80A after rotary forging (a) and hot rolling (b) Heat Treatment The specification recommends the full treatment of Nimonic 80A as follows: 10501080ºC/8h/AC+845ºC/24h/AC+700ºC/16h/AC. For determination of solid solution...
Abstract
View Papertitled, The Application of Ni-Base Alloy Nimonic 80A for Buckets of USC Steam Turbine in China
View
PDF
for content titled, The Application of Ni-Base Alloy Nimonic 80A for Buckets of USC Steam Turbine in China
Nimonic 80A, a Ni-base superalloy mainly strengthened by Al and Ti to form γ'-Ni 3 (Al, Ti) precipitation in Ni-Cr solid solution strengthened austenite matrix, has been used in different industries for more than half century (especially for aero-engine application). In consideration of high strengths and corrosion resistance both Shanghai Turbine Company (STC) has adopted Nimonic 80A as bucket material for ultra-super-critical (USC) turbines with the steam parameters of 600°C, 25MPa. First series of two 1000MW USC steam turbines made by Shanghai Turbine Co. were already put in service on the end of 2006. Large amount of Nimonic 80A with different sizes are produced in Special Steel Branch of BAOSTEEL, Shanghai. Vacuum induction melting and Ar protected atmosphere electro-slag remelting (VIM+PESR) process has been selected for premium quality high strength Nimonic 80A. For higher mechanical properties the alloying element adjustment, optimization of hot deformation and heat treatment followed by detail structure characterization have been done in this paper. The Chinese premium quality high strength Nimonic 80A can fully fulfill the USC turbine bucket requirements.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 914-923, October 21–24, 2019,
... (alloy code, TKT34) and an alloy with 0.1 wt% of added boron (alloy code, TKT35) were used in this study. An ingot was hot forged at a temperature of 1,403 K and hot rolled (caliberrolling) at a temperature of 1,273 K to a reduction rate of approximately 90%. It then underwent solution treatment in a β...
Abstract
View Papertitled, Creep Characteristics of Near Alpha-Ti Alloys and Proposal of Deformation Mechanism Map
View
PDF
for content titled, Creep Characteristics of Near Alpha-Ti Alloys and Proposal of Deformation Mechanism Map
Titanium alloys are expected to be used as heat-resisting structural materials in the airplane and automotive industries. In this study, the creep properties of near-α Ti alloys consisting of a lamellar microstructure were studied. Ti–8.5wt%Al–8.0wt%Zr–2wt%Mo–1wt%Nb–0.15wt%Si alloy (alloy code, TKT34) and an alloy with 0.1 wt% of added boron (alloy code, TKT35) were used in this study. An ingot was hot forged at a temperature of 1,403 K and hot rolled (caliberrolling) at a temperature of 1,273 K to a reduction rate of approximately 90%. It then underwent solution treatment in a β single-phase region followed by air cooling. Finally, it was subjected to aging treatment for 28.3 ks at a temperature of 863 K and then air-cooled. Two solution treatment conditions were applied: a time of 1.8 ks at a temperature of 1,323 K (high temperature/short time (HS)) and a time of 3.6 ks at a temperature of 1,223 K (low temperature/long time (LL)). The average grain size of the prior β grains showed a tendency of the solution treatment temperature being low and the boron-added alloys tending to be small. The length and thickness of the lamellar of these alloys shortened or thinned owing to the addition of boron and at a low solution treatment temperature. The creep tests were carried out at an applied stress of 137 MPa and a temperature of 923 K in air. The creep rupture life of these alloys was excellent, in order of TKT35 (LL) < TKT34 (LL) < TKT35 (HS) ≦ TKT34 (HS). Therefore, the creep rupture life of these alloys was shown to be superior under the HS solution treatment condition as compared to the LL solution treatment condition. However, the minimum or steady-state strain rate of these alloys became slower in order of TKT 35 (LL)> TKT34 (LL)> TKT34 (HS) ≧ TKT35 (HS). The creep properties depended on the microstructure of the alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 814-820, February 25–28, 2025,
... from the as-cast specimen, where the solution heat treatment time t = 0, showed that Cd0(=Cd(0)) =3.97 at.% , while Ci0d(=Cid(0)) = 1.23 at respectively. Figure 2 shows the results of the EPMA analysis for Cd(t), shown as a solid line and filled-in plots, and Cid(t), shown as dotted lines and outlined...
Abstract
View Papertitled, Homogenization During <span class="search-highlight">Solution</span> Heat <span class="search-highlight">Treatment</span> of Ni-Base Single-Crystal Superalloy TMS-238
View
PDF
for content titled, Homogenization During <span class="search-highlight">Solution</span> Heat <span class="search-highlight">Treatment</span> of Ni-Base Single-Crystal Superalloy TMS-238
To maximize the mechanical properties of Ni-base superalloys, solution heat treatment is essential to sufficiently homogenize the dendritic segregations formed during solidification. To investigate the homogenization behavior during solution heat treatment, a Ni-base single crystal superalloy, TMS-238, was heat treated under various conditions; temperatures ranging from 1573 to 1613 K for times ranging from 2 to 100 h. After solution heat treatment, the average concentrations of Re, an element that exhibits the highest degree of segregation, in dendrite core and inter-dendritic regions were analyzed. From these results, apparent diffusion constants, D app , were determined based on a proposed homogenization model. Obtained D app values were significantly smaller than the diffusion constant of Re in Ni, strongly suggesting that the apparent diffusion coefficients should be obtained experimentally when using the target alloy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
... dissolved in a short time. In addition, the Nb concentration in the matrix after solid solution did not change due to the presence or absence of low-temperature heat treatment. Therefore, it was suggested that the change in the precipitation form at the early stage of -phase precipitation had a great...
Abstract
View Papertitled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
View
PDF
for content titled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 246-252, October 21–24, 2019,
... of fully ferritic HiperFer (High performance Ferrite) steels strengthened by a combination of solid solution and intermetallic Laves phase particles of the (Fe,Cr,Si)2(Nb,W) type was developed to fulfil these challenges [1]. Fully ferritic means, that these steels possess a ferritic matrix at any...
Abstract
View Papertitled, Properties and Microstructure Evolution of Advanced High Performance Ferritic (HiperFer) Steels
View
PDF
for content titled, Properties and Microstructure Evolution of Advanced High Performance Ferritic (HiperFer) Steels
More efficient, sustainable, flexible and cost-effective energy technologies are strongly needed to fulfil the new challenges of the German “Energiewende”. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Hence, advanced materials are needed. The present study focuses on stainless, high strength, ferritic (non-martensitic) steel grades, regarding thermal treatment effects on particle evolution. The heat treatment includes variations, e.g. a two phase pre heat treatment. Effects of the treatment were analysed and connected to creep performance. Experiments at differently heat treated materials show promising improvement of creep performance. These results can be linked to the stability and evolution of strengthening Laves phase particles.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
... be increased. V produces VN. V restricts the single phase, and the VN precipitation accelerates it. phase and phase have different diffusion coefficient of nitrogen and solution limit of nitrogen determined by Sievert s law [1]. Diffusion model of nitrogen in solid state nitriding was considered...
Abstract
View Papertitled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
View
PDF
for content titled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 900-915, August 31–September 3, 2010,
... on the need to develop a homogenization treatment to remove the segregation that develops in the as-cast dendritic structure [10]. This paper details the initial screening data on tensile and creeprupture testing at 800oC on a wide range of precipitation-strengthened and solid-solution Nibased alloys after...
Abstract
View Papertitled, High-Temperature Mechanical Properties and Microstructure of Cast Ni-Based Superalloys for Steam Turbine Casing Applications
View
PDF
for content titled, High-Temperature Mechanical Properties and Microstructure of Cast Ni-Based Superalloys for Steam Turbine Casing Applications
Advanced UltraSupercritical (A-USC) Steam fossil power plants will operate at steam temperatures up to 760°C, which will require the use of Ni-based superalloys for steam boiler/superheater and turbine systems. In 2008, the Oak Ridge National Laboratory (ORNL) and the National Engineering Technology Laboratory/Albany (NETL/Albany) collaborated to make and test castings of Ni-based superalloys, which were previously only commercially available in wrought form. These cast Ni-based based alloys are envisioned for the steam turbine casing, but they may also be applicable to other large components that connect the steam supply to the steam turbine. ORNL and NETL/Albany have produced small vacuum castings of HR 282, Nimonic 105, Inconel 740, and alloy 263, which are precipitation-hardened Ni-based superalloys, as well as solid-solution superalloys such as alloys 625, 617 and 230. The initial alloy screening included tensile and creep-testing at 800°C to determine which alloys are best suited for the steam turbine casing application at 760°C. HR 282 has the best combination of high-temperature strength and ductility, making it a good candidate for the cast-casing application. Cast and wrought versions of HR 282 have similar creep-rupture strength, based on the limited data available to-date. Detailed comparisons to the other alloys and microstructures are included in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 904-913, October 21–24, 2019,
... of Ni 75 Al 10 V 15 (in at.%) was attempted by various heat treatment processes. When the alloy was continuously cooled down after solution treatment, fine and cuboidal Ni 3 Al precipitates were developed by rapid cooling while coarse, rounded and coalesced Ni 3 Al precipitates were developed by slow...
Abstract
View Papertitled, Effect of Heat <span class="search-highlight">Treatment</span> on Microstructure and Mechanical Properties of Dual Two-Phase Ni 3 Al and Ni 3 V Intermetallic Alloys
View
PDF
for content titled, Effect of Heat <span class="search-highlight">Treatment</span> on Microstructure and Mechanical Properties of Dual Two-Phase Ni 3 Al and Ni 3 V Intermetallic Alloys
So-called Ni base dual two-phase intermetallic alloys are composed of primary Ni 3 Al (L1 2 ) phase precipitates among eutectoid microstructures consisting of the Ni 3 Al and Ni 3 V (D0 22 ) phases. In this article, microstructural refinement of an alloy with a nominal composition of Ni 75 Al 10 V 15 (in at.%) was attempted by various heat treatment processes. When the alloy was continuously cooled down after solution treatment, fine and cuboidal Ni 3 Al precipitates were developed by rapid cooling while coarse, rounded and coalesced Ni 3 Al precipitates were developed by slow cooling. When the alloy was isothermally annealed at temperatures above the eutectoid temperature, the morphology of the Ni 3 Al precipitates changed from fine and cuboidal one to large and rounded one with increase in annealing time. When the alloy was annealed at temperatures below the eutectoid temperature, the Ni 3 Al precipitates were grown keeping cuboidal morphology. The morphological change from the cuboidal to rounded Ni 3 Al precipitates was induced by the transition from the growth driven by elastic interaction energy between the precipitate and matrix to that by the surface energy of the precipitate. Fine and cuboidal Ni 3 Al precipitates generally resulted in high hardness.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1402-1407, October 21–24, 2019,
..., it is clear that the solid solution of carbon changes the phase region from single phase to two phase region. Table.1 shows analyzed compositions in Ti-43Al-C ternary alloys and partition coefficient between phases. Fig. 5 shows isotherm section of Ti-43Al-C at 1523K. With the addition of 0.2 to 0.8...
Abstract
View Papertitled, Effect of Carbon in <span class="search-highlight">Solution</span> on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
View
PDF
for content titled, Effect of Carbon in <span class="search-highlight">Solution</span> on Phase Equilibria among β/α(α 2 )/γ Phases in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
Interstitial carbon (C) in β-Ti, α-Ti, α 2 -Ti 3 Al and γ-TiAl phases present in the γ-TiAl alloys with and without substitutional elements (M: transition element) is quantitatively analyzed using soft X-ray emission spectroscopy (SXES), in order to reveal the effect of solute carbon on the phase equilibria. SXES for carbon analysis was used and the peak intensity of the second reflection of carbon Kα is analyzed using the fully homogenized sample having different C content under the optimum condition to make the accurate calibration curves. The obtained calibration curve is in an accuracy of ± 0.07 at. % C. In all heat treated alloys, no carbide is observed. In Ti-Al binary system, the α+γ phase region shifts toward higher Ti side, and the volume fraction of γ phase increases slightly with the carbon addition. In all system, carbon preferentially partitions into the α phase, followed by less partitioning in the γ and β phases in order. The carbon content in the β phase remains unchanged of almost 0.05 at. % regardless of carbon addition in Ti-Al-V system and the partition coefficient of carbon between the α and γ phases becomes larger in Ti-Al-V system than that in TiAl binary system.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 398-404, October 21–24, 2019,
... creep strain rate and (b) reduction in area after aging treatment at 973 K for 16 hrs followed by air cooling. 402 are Alloy718 and Alloy600 (Ni-16Cr-7Fe) strengthened by solid solution. The creep rupture property of Ni-38Cr-3.8Al was extremely lower than that of Alloy718 and it was similar...
Abstract
View Papertitled, High Temperature Properties of Ni-38-Cr-3.8Al with High Hardness and High Hot Corrosion Resistance
View
PDF
for content titled, High Temperature Properties of Ni-38-Cr-3.8Al with High Hardness and High Hot Corrosion Resistance
Ni-38Cr-3.8Al has high hardness and high corrosion resistance with good hot workability, and therefore, it has been applied on various applications. However, in order to expand further application, it is important to understand the high temperature properties. Then, this study focused on the high temperature properties such as thermal phase stability, hardness, tensile property, creep property and hot corrosion resistance. As the result of studies, we found that the thermal phase stability of (γ/α-Cr) lamellar structure and the high temperature properties were strongly influenced by the temperature. Although the high temperature properties, except for creep property, of Ni-38Cr-3.8Al were superior to those of conventional Ni-based superalloys, the properties were dramatically degraded beyond 973 K. This is because the lamellar structure begins to collapse around 973 K due to the thermal stability of the lamellar structure. The hot corrosion resistance of Ni-38Cr-3.8Al was superior to that of conventional Ni-based superalloys, however, the advantage disappeared around 1073 K. These results indicate that Ni-38Cr-3.8Al is capable as a heat resistant material which is required the hot corrosion resistance rather than a heat resistant material with high strength at high temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 98-119, October 22–25, 2013,
... phase can still keep nano-size( 34nm) even at 650 oC aging for 10,000h. It is an important reason for excellent strengthening effect of Cu-rich phase precipitation in Super304H heat-resistant steel[2,4]. Solution treatment 650°C /1h Figure 8: The concentration of Cu atoms to form Cu-rich clusters...
Abstract
View Papertitled, An Investigation on Structure Stability of Advanced Austenitic Heat-Resisting Steels and Ni-Base Superalloys for 600–700 °C A-USC Power Plant Application
View
PDF
for content titled, An Investigation on Structure Stability of Advanced Austenitic Heat-Resisting Steels and Ni-Base Superalloys for 600–700 °C A-USC Power Plant Application
This overview paper contains a part of structure stability study on advanced austenitic heat-resisting steels (TP347H, Super304H and HR3C) and Ni-base superalloys (Nimonic80A, Waspaloy and Inconel740/740H) for 600-700°C A-USC fossil power plant application from a long-term joint project among companies, research institutes and university in China. The long time structure stability of these advanced austenitic steel TP347H, Super304H, HR3C in the temperature range of 650-700 °C and Ni-base superalloys Nimonic80A, Waspaloy and Inconel740/740H in the temperature range of 600-800°C till 10,000h have been detailed studied in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 812-820, October 21–24, 2019,
... the oxidation resistance. Then, we have focused on Ti-Al-Nb-Zr alloys which Nb was added instead of Sn. Zr was added for solid solution strengthening. In this study, the formation of microstructures by thermomechanical processing and the effect of microstructure on the mechanical properties were investigated...
Abstract
View Papertitled, Microstructure Evolution and High-Temperature Strength of Thermomechanical Processed Near-α Ti Alloys
View
PDF
for content titled, Microstructure Evolution and High-Temperature Strength of Thermomechanical Processed Near-α Ti Alloys
Understanding of the thermomechanical processing that affects microstructures is important to develop new alloys, because the mechanical properties of Ti alloys depend on the microstructures. In our previous study, we found Sn deteriorated the oxidation resistance, while Nb improved the oxidation resistance. Then, we have focused on Ti-Al-Nb-Zr alloys which Nb was added instead of Sn. Zr was added for solid solution strengthening. In this study, the formation of microstructures by thermomechanical processing and the effect of microstructure on the mechanical properties were investigated using the Ti-13Al-2Nb-2Zr (at%) alloy. The samples heat-treated in the β+α phase followed by furnace cooling after processed in the β+α phase formed the equiaxed or the ellipsoid α phase surrounded by the β phase. On the other hand, the sample heat-treated in the β+α phase followed by furnace cooling after processed in the β phase formed the lamellar microstructure. The compression strengths of the equiaxed α structure processed at two temperatures in the β+α phase were almost the same. While creep life of the bi-modal structure was drastically changed by processing temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... Abstract MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys...
Abstract
View Papertitled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
View
PDF
for content titled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused not only by the continuity of Mo solid solution in solidification microstructure but also by TiC phase affecting as a fracture-resistant phase. In order to understand the microstructure evolution during solidification and the effect of TiC phase on the fracture toughness of the MoSiBTiC alloy, Mo-Ti-C ternary model alloys are dealt with in this study. Then, (1) liquidus surface projection and (2) isothermal section and the elastic moduli of TiC phase in equilibrium with Mo solid solution were focused on. The obtained liquidus surface projection suggests that the ternary transition peritectic reaction (L+ Mo 2 C->Mo+TiC) takes place in Mo-rich region. At 1800 °C, TiC phase in equilibrium with Mo phase contains at least 20.2 at% Mo and the Mo/TiC/Mo 2 C three phase region should exist around Mo-15Ti-10C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 276-280, October 22–25, 2013,
... be better from fabricating points. Whether re-solution for the bent tube is performed after bending depends on its bending radius, followed by welding and post weld heat treatment of component (this treatment can also be the aging treatment for annealed sector at the same time), this treating manner can...
Abstract
View Papertitled, Discussion of Delivered Condition Specified in ASME Code Case 2702 on Inconel 740H Used for A-USC Boiler
View
PDF
for content titled, Discussion of Delivered Condition Specified in ASME Code Case 2702 on Inconel 740H Used for A-USC Boiler
Delivered condition of Inconel740H specified in ASME Code Case 2702 is solution heat treated and aged condition, fabricating performances are also based on the condition, and a re-annealing and aging shall be performed if cold forming to strains is over 5%. These almost harsh requirements bring great inconvenience for its engineering practice and utilization. The comparative bending tests on 740H tubes in solution heat treated + aged condition and solution heat treated condition were performed, and the rules’ reasonability of the specification on delivered condition was discussed and analyzed from point view of deformability and weldability in the paper. The bending test results showed that tube bent was difficult because of its high strength and limited deforming capacity in solution heat treated + aged condition. Therefore, the material supplied in the solution condition may be better from fabricating points. Whether re-solution for the bent tube is performed after bending depends on its bending radius, followed by welding and post weld heat treatment of component (this treatment can also be the aging treatment for annealed sector at the same time), this treating manner can meet regulatory requirements. For solution tubes, however, there are some inconveniences to its engineering application because fewer research studies were carried out on its properties up to now, and no regulations on them were given for the material in the specification. Suggestions are: 1) deeply investigating the properties of tubes in solution condition, including mechanical and fabricating performances, 2) adding the mechanical properties, maximum allowable cold forming to stain without performing re-solution and weld strength reduction factor of solution material to the code case.
1