Skip Nav Destination
Close Modal
Search Results for
selective laser melting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 34 Search Results for
selective laser melting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 976-980, October 21–24, 2019,
... Abstract The current work presented a study of isothermal-oxidation behavior of the additive manufactured (AM) Alloy718 in air at 800°C. The oxidation behavior of Alloy718 specimens produced by selective laser melting (SLM) and electron beam melting (EBM) process were comparatively examined...
Abstract
View Paper
PDF
The current work presented a study of isothermal-oxidation behavior of the additive manufactured (AM) Alloy718 in air at 800°C. The oxidation behavior of Alloy718 specimens produced by selective laser melting (SLM) and electron beam melting (EBM) process were comparatively examined. No significant differences were observed in oxidation kinetics while different microstructures of the oxide scale were found. Coarse and columnar chromia grains developed on SLM specimens, whereas the chromia scale of EBM specimens consisted of extremely fine grains. Glow Discharge Optical Emission Spectrometry (GD-OES) analysis revealed that SLM specimens contain a higher content of Ti in chromia compared with EBM specimens. Process-induced supersaturation in SLM specimens might lead to a relatively high concentration of Ti in the chromia, which may affect the grain morphology of oxide scale in the SLM specimen.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 735-746, October 11–14, 2016,
..., distribution and morphology, quantified using advanced electron microscopy techniques. advanced electron microscopy cast nickel-chromium alloys grain structure heat treatment high temperature exposures microstructure precipitate size selective laser melting Advances in Materials Technology...
Abstract
View Paper
PDF
Additive manufacturing (AM) is a process where, as the name suggests, material is added during production, in contrast to techniques such as machining, where material is removed. With metals, AM processes involve localised melting of a powder or wire in specific locations to produce a part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. These components are often produced from nickel-based superalloys, a group of materials which possess excellent mechanical properties at high temperatures. However, although the microstructural and mechanical property evolution during the high temperature exposure of conventionally produced superalloy materials is reasonably well understood, the effects of prolonged high temperature exposure on AM material are less well known. This research is concerned with the microstructures of components produced using AM techniques and an examination of the effect of subsequent high temperature exposures. In particular, the paper will focus on the differences between cast and SLM IN939 as a function of heat treatment and subsequent ageing, including differences in grain structure and precipitate size, distribution and morphology, quantified using advanced electron microscopy techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 35-46, October 21–24, 2019,
..., more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability...
Abstract
View Paper
PDF
The measurement of damage from high temperature solid particle erosion (HTSPE) can be a lengthy process within the laboratory with many lab-based systems requiring sequential heat and cooling of the test piece to enable mass and/or scar volume measurements to be made ex situ. Over the last few years a new lab-based system has been in development at the National Physical Laboratory which has the ability to measure the mass and volume change of eroded samples in situ without the need to cool the sample. Results have previously been shown demonstrating the in situ mass measurement, more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability to manufacture low volume complex parts and has been used in rapid prototyping. As the technique has developed there is increasing interest to take advantage of the ability to manufacture complex parts in one piece, which in some case can be more cost and time effective than traditional manufacturing routes. For all the benefits of SLM there are some constraints on the process, these include porosity and defects in the materials such as ‘kissing bonds’, surface roughness, trapped powder and microstructural variation. These features of the processing route may have implications for component performance such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, October 15–18, 2024,
.... The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg. INTRODUCTION Additive manufacturing (AM) is a manufacturing route that is capable of producing increasingly complex geometries and components. Selective laser melting (SLM) manufacturing has been...
Abstract
View Paper
PDF
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 836-841, October 21–24, 2019,
... (PBF) is mainly used for metals among various AM methods. Selective laser melting (SLM) and Electron beam melting (EBM) are the two common PBFs. Recently, numerous studies have been reported on mechanical properties of AM processed Alloy 718 [2-4]. As heat sources are different in laser and electron...
Abstract
View Paper
PDF
Alloy 718 is one of the most widely used for aircraft engine and gas turbine components requiring oxidation and corrosion resistance as well as strength at elevated temperatures. Alloy 718 has been produced in both wrought and cast forms, but metal injection molding and metal-based additive manufacturing (AM) technologies have the potential to create a three-dimensional component. Their mechanical properties are highly dependent on the types of powder processing, but the relationship between microstructures and properties has not been clarified. In this study, the mechanical properties of Alloy 718 manufactured by AM are compared to cast and wrought properties. The electron beam melting processed specimens with strong anisotropy showed higher yield strength, which can be explained by critical resolved shear stress. In addition, the creep deformation showed a complicated behavior which was different from that of wrought alloy. Such abnormal behavior was characterized by γ-channel dislocation activity.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 861-872, October 15–18, 2024,
..., Additive Manufacturing Processes, vol. 24. ASM International, p. 0, Jun. 15, 2020. doi: 10.31399/asm.hb.v24.a0006582. [7] Z. Yu et al., The effect of Hf on solidification cracking inhibition of IN738LC processed by Selective Laser Melting, Mater. Sci. Eng. A, vol. 804, 2021, doi: 10.1016/j.msea...
Abstract
View Paper
PDF
The advancement of additive manufacturing (AM) technology has heightened interest in producing components from nickel-based superalloys for high-temperature applications; however, developing high gamma prime (γ’) strengthened alloys suitable for AM at temperatures of 1000°C or higher poses significant challenges due to their “non-weldable” nature. Traditional compositions intended for casting or wrought processes are often unsuitable for AM due to their rapid heating and cooling cycles, leading to performance compromises. This study introduces ABD-1000AM, a novel high gamma prime Ni-based superalloy designed using the Alloys-by-Design computational approach to excel in AM applications at elevated temperatures. Tailored for AM, particularly powder bed fusion, ABD-1000AM demonstrates exceptional processing capability and high-temperature mechanical and environmental performance at 1000°C. The study discusses the alloy design approach, highlighting the optimization of key performance parameters, composition, and process-microstructure-performance relationships to achieve ABD-1000AM’s unique combination of processability and creep resistance. Insights from ABD-1000AM’s development inform future directions for superalloy development in complex AM components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 23-38, October 15–18, 2024,
... of the materials or components produced. Many studies have already been reported on the link between process parameters, microstructures obtained and mechanical properties [2-11] using various metal additive manufacturing processes, mainly selective laser melting (SLM) and direct laser deposition (DLD). However...
Abstract
View Paper
PDF
This study examines the corrosion resistance of additively manufactured 316L stainless steel (SS) for nuclear applications across three environments: pressurized water reactor primary water (PWR PW), hot concentrated nitric acid, and seawater. Wire-feed laser additive manufacturing (WLAM) specimens showed oxidation behavior similar to wrought 316L SS in PWR PW, though stress corrosion cracking (SCC) susceptibility varied with heat treatment. In nitric acid testing, laser powder bed fusion (L-PBF) specimens demonstrated superior corrosion resistance compared to conventional SS, primarily due to improved intergranular corrosion resistance resulting from cleaner feedstock powder and rapid solidification rates that minimized grain boundary segregation. Laser metal deposition (LMD) repair studies in seawater environments successfully produced dense, crack-free repairs with good metallurgical bonding that matched the substrate’s mechanical properties while maintaining corrosion resistance. These results emphasize the importance of corrosion testing for additively manufactured components and understanding how their unique microstructures affect performance.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
... of the Laser Scan Strategy on Grain Structure and Cracking Behaviour in SLM Powder-Bed Fabricated Nickel Superalloy , Journal of Alloys and Compounds, Vol, 615 (2014), pp. 338-347. [6] Catchpole-Smith, S. et al, Fractal Scan Strategies for Selective Laser Melting of Unweldable Nickel Superalloys , Additive...
Abstract
View Paper
PDF
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 159-170, October 15–18, 2024,
... on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting , Journal of Alloys and Compounds, 764, 639-649 (2018). 168 [11] S. Taller and T. Austin, Using post-processing heat treatments to elucidate precipitate strengthening of additively manufactured superalloy 718 , Additive...
Abstract
View Paper
PDF
The Advanced Materials and Manufacturing Technologies (AMMT) program is aiming at the accelerated incorporation of new materials and manufacturing technologies into nuclear-related systems. Complex Ni-based components fabricated by laser powder bed fusion (LPBF) could enable operating temperatures at T > 700°C in aggressive environments such as molten salts or liquid metals. However, available mechanical properties data relevant to material qualification remains limited, in particular for Ni-based alloys routinely fabricated by LPBF such as IN718 (Ni- 19Cr-18Fe-5Nb-3Mo) and Haynes 282 (Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al). Creep testing was conducted on LPBF 718 at 600°C and 650°C and on LPBF 282 at 750°C. finding that the creep strength of the two alloys was close to that of wrought counterparts. with lower ductility at rupture. Heat treatments were tailored to the LPBF-specific microstructure to achieve grain recrystallization and form strengthening γ' precipitates for LPBF 282 and γ' and γ" precipitates for LPBF 718. In-situ data generated during printing and ex-situ X-ray computed tomography (XCT) scans were used to correlate the creep properties of LPBF 282 to the material flaw distribution. In- situ data revealed that spatter particles are the potential causes for flaws formation in LPBF 282. with significant variation between rods based on their location on the build plate. XCT scans revealed the formation of a larger number of creep flaws after testing in the specimens with a higher initial flaw density. which led to a lower ductility for the specimen.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 74-87, October 15–18, 2024,
.... REFERENCES [1] Engeli, Roman, Thomas Etter, Simone Hövel, and Konrad Wegener. 2016. Processability of Different IN738LC Powder Batches by Selective Laser Melting. Journal of Materials Processing Technology. Elsevier BV. [2] Perevoshchikova, Nataliya, Jordan Rigaud, Yu Sha, Martin Heilmaier, Barrie Finnin...
Abstract
View Paper
PDF
The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines and more recently, hot-section components have been fabricated using AM nickel-base superalloys, which have shown substantial benefits. This paper will discuss and summarize extensive studies led by EPRI in a novel AM nickel-base superalloy (ABD·900-AM). A comprehensive high temperature creep testing study including >67,000 hours of creep data concluded that ABD-900AM shows improved properties compared to similar ~35% volume fraction gamma prime strengthened nickel-base superalloys fabricated using additive methods. Several different creep mechanisms were identified and various factors influencing high temperature behavior, such as grain size, orientation, processing method, heat treatment, carbide structure, chemistry and porosity were explored. Additional studies on the printability, recyclability of powder, wide range of process parameters and several other factors have also been studied and results are summarized. A summary on the alloy -by-design approach and accelerated material acceptance of ABD-900AM through extensive testing and characterization is further discussed. Numerous field studies and examples of field use cases in ABD-900AM are also evaluated to showcase industry adoption of ABD-900AM.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 994-1007, October 15–18, 2024,
... selective laser melting, Fatigue Fract Eng Mater Struct 43 (2020) 2312 2325. httpsdoi.org/10.1111/ffe.13298. [12] R.J. Williams, J. Al-Lami, P.A. Hooper, M.S. Pham, C.M. Davies, Creep deformation and failure properties of 316 L stainless steel manufactured by laser powder bed fusion under multiaxial loading...
Abstract
View Paper
PDF
Laser additive manufacturing (AM) is being considered by the nuclear industry to manufacture net- shape components for advanced reactors and micro reactors. Part-to-part and vendor-to-vendor variations in part quality, microstructure, and mechanical properties are common for additively manufactured components, attributing to the different processing conditions. This work demonstrates the use of microstructurally graded specimen as a high throughput means to establish the relationship between process-microstructure-creep properties. Through graded specimen manufacturing, multiple microstructures, correlated to the processing conditions, can be produced in a single specimen. The effects of a solution annealing heat treatment on the microstructure and creep properties of AM 316H are investigated in this work. Using digital image correlation (DIC), the creep strain can be calculated in these graded regions, allowing for multiple microstructures to be probed in a single creep test. The solution annealing heat treatment was not sufficient in recrystallization of the large, elongated grains in the AM material; however, it was sufficient in removing the cellular structure commonly found in AM processed alloys creating a network of subgrains in their place. The resulting changes in microstructure and mechanical properties are presented. The heat treatment was found to generally increase the minimum creep rate, reduce the minimum creep rate, and reduce the ductility. Significant amounts of grain boundary carbides and cavitation were observed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 365-372, October 15–18, 2024,
... (LPBF) is a common additive manufacturing technology. Laser melting of the selected area of the powder bed and layer-by-layer manufacturing provide a specific solidification microstructure resulting from the melt-pool geometry and laser scan strategy. Therefore, understanding of the microstructure...
Abstract
View Paper
PDF
Modified 9Cr-1Mo steel was manufactured via laser powder bed fusion (LPBF) using gas atomized powders under various building conditions. Dense samples were obtained at an energy density of 111-125 J/mm 3 . As-built samples were subjected to a normalization and tempering heat treatments. The microstructure of the as-built sample exhibits a duplex structure, comprising coarse columnar δ-ferrite grains and fine martensite grains. In addition, a small amount of retained austenite phase was observed at the interface between δ-ferrite and martensite. The formation of δ-ferrite is attributed to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built microstructure morphology characterized by the columnar δ- ferrite was eliminated after the heat treatments, resulting in a tempered martensitic microstructure that is identical with that obtained through the conventional process. However, an increase in prior austenite grain size was observed when the area fraction of δ-ferrite in the as-built condition was high, due to faster phase transformation kinetics of martensite than that of δ-ferrite during the normalization. This suggests that the prior austenite grain size can be controlled by optimizing the area fraction of δ-ferrite and martensite in the as-built microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 650-661, October 15–18, 2024,
..., GER3957B (04/01) 30. [15] Y. Hagedon, J. Risse, W. Meiners et al. Proceeding of nickel-based superalloy Mar M247 by means of high temperature-selective laser melting (HT-SLM), In Proceedings of the International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP 2013), Leiria, Portugal...
Abstract
View Paper
PDF
High gamma prime Ni-based superalloys comprising ≥3.5 % Al are difficult to weld due to high propensity of these materials to weld solidification, heat affected zone liquation, and stress-strain cracking. In this study the root cause analysis of cracking and overview on the developed weldable Ni-based superalloys for repair of turbine engine components manufactured from equiaxed (EA), directionally solidified (DS), and single crystal (SX) materials as well as for 3D AM is provided. It is shown that the problem with the solidification and HAZ liquation cracking of turbine engine components manufactured from EA and DS superalloys was successfully resolved by modification of welding materials with boron and silicon to provide a sufficient amount of eutectic at terminal solidification to promote self-healing of liquation cracks along the weld - base material interface. For crack repair of turbine engine components and 3D AM ductile LW4280, LW7901 and LCT materials were developed. It is shown that LW7901 and LCT welding materials comprising 30 - 32 wt.% Co produced sound welds by GTAW-MA on various SX and DS materials. Welds demonstrated high ductility, desirable combination of strength and oxidation properties for tip repair of turbine blades. Examples of tip repair of turbine blades are provided.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 483-494, October 15–18, 2024,
.... Mueller, M. Oechsner, A Thermo-Mechanical Fatigue Crack Growth Accumulative Model for Gas Turbine Blades and Vanes, Volume 7A: Structures and Dynamics, ASME, 2016, V07AT28A013. [2] Carter L. N., 2013, Selective laser melting of nickel superalloys for high temperature applications, Ph.D., School...
Abstract
View Paper
PDF
For the safe life prediction of components under high cycle fatigue loading at high temperature, such as gas turbine blades and turbocharger components, the behavior of initial defects, which are physically short cracks below the long crack threshold ΔK is of crucial importance. The evolution of different crack closure mechanisms (such as plasticity, roughness and oxide induced crack closure) can lead to crack arrest by a reduction of the effective crack tip loading. To visualize the crack growth behavior of such cracks, cyclic crack resistance curves (cyclic R-curves) are used. The experimental determination of cyclic R-curves is challenging, especially under high temperature conditions due to a lack of optical accessibility. The formation of very short cracks in high strength materials makes it even more complicated to reliably determine these data. Within this study the crack growth behavior of physically short fatigue cracks in three different material states of the nickel alloy IN718 (wrought, cast and PBF-LB/M - processed) is experimentally determined at 650 °C. Based on a load increase procedure applied on Single Edge Notched (SEN) specimens with a compression pre-cracking procedure in advance, crack propagation of physically short cracks is measured with alternating current potential drop systems in air and under vacuum conditions. These examinations are carried out for three different load ratios (R = -1, 0 and 0.5) to investigate the amount of certain crack closure mechanisms active under different loading conditions. Moreover, the formation of a plastic wake along the crack flanks is determined by a finite element simulation. The results determined in air and under vacuum conditions are used to describe the impact of oxide induced crack closure on the behavior of physically short cracks. This allows the evaluation of the behavior of both near-surface and internal defects that are not accessible to the atmosphere.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 111-112, October 15–18, 2024,
... Abstract Diode laser cladding (DLC) surfaces, valued in the nuclear industry for their wear resistance, corrosion protection, and oxidation resistance, present unique challenges in surface characterization compared to conventionally machined surfaces. While traditional machined surfaces exhibit...
Abstract
View Paper
PDF
Diode laser cladding (DLC) surfaces, valued in the nuclear industry for their wear resistance, corrosion protection, and oxidation resistance, present unique challenges in surface characterization compared to conventionally machined surfaces. While traditional machined surfaces exhibit predictable, periodic topographies that can be validated through simple linear profile measurements, DLC surfaces feature distinctive metal tracks with central peaks and inter-track troughs, creating a wave-like structure with randomly distributed spherical asperities. This complex topography cannot be adequately characterized by traditional single-trace sampling methods due to significant variations in localized features at peaks and troughs. To address this challenge, this study examines DLC surfaces produced under varying control parameters (laser power, head travel speed, powder feed rate, and track offset) using laser confocal microscopy. Both profile and areal surface measurements are compared to identify the most effective method for characterizing DLC surface structure and quality, providing a foundation for standardized quality assessment in industrial applications.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, October 15–18, 2024,
.../j.jmapro.2021.12.033. [2] P. K. Gokuldoss, S. Kolla, and J. Eckert, Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting Selection Guidelines, Materials, vol. 10, no. 6, p. 672, Jun. 2017, DOI: 10.3390/ma10060672. [3] T. Özel, H. Shokri, and R. Loizeau...
Abstract
View Paper
PDF
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 135-146, October 15–18, 2024,
... of interest, with few exceptions, boron is generally considered to be an unintended or tramp element typically appearing in much lower concentrations. One source of such tramp boron is from leaching of refractory ceramic materials used in the construction vessels used in alloy melting. 136 of welded...
Abstract
View Paper
PDF
As many nuclear power plants are in the license renewal operating period and some are entering subsequent license renewal, there is increased probability that repairs will be needed on components that have been exposed to significant neutron fluence. The neutron-driven transmutation of nickel and tramp boron in austenitic materials commonly used in reactor internals can lead to the generation of trapped helium and the associated risk of helium-induced cracking (HeIC) during weld repairs. In the weld heat affected zone, where temperatures are insufficient to allow the helium to diffuse out of the material, the helium can remain trapped. Upon cooling, the residual stresses, combined with weakened grain boundaries due to helium coalescence, can lead to cracking. The current ASME limit for helium content for Code repairs is 0.1 appm. Prior work has demonstrated a strong inverse correlation between helium content and permissible weld heat input for avoidance of HelC. The helium concentration in the material to be repaired is thus a critical input to the development of weld repair processes to be applied to these materials. The reliable measurement of helium in irradiated materials at concentrations relevant for the evaluation of HeIC risk is a specialized process. It is important to demonstrate that the capability is available and can be practically leveraged to support emergent repairs. This paper presents on the execution and results of a multi-laboratory test program aimed at demonstrating the industry capability of acquiring accurate, repeatable, and timely measurements of relatively low concentrations of helium (< ~20 appm) within austenitic materials commonly used in reactor internals. Participating laboratories were supplied with equivalent specimens extracted from boron-doped coupons that were irradiated to drive the boron-to-helium transmutation reaction. The results and lessons learned from the program are expected to support the development of industry guidance for the acquisition of similar measurements supporting nuclear component repairs.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, October 15–18, 2024,
... S., and Wegener K., 2013, High temperature material properties of IN738LC processed by selective laser melting (SLM) technology, Rapid Prototyping Journal, 19(4), pp. 282 290. 688 [15] Megahed S., Krämer K. M., Heinze C., Kontermann C., Udoh A., Weihe S., and Oechsner M., 2023, Influence of build...
Abstract
View Paper
PDF
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 50-61, October 15–18, 2024,
..., Christian Knaak, Stefan Mann Fraunhofer Institute for Laser Technology (ILT), Aachen, NRW, Germany Janusz Bialach, Dana Clemence, Michael Wright Liburdi Dimetrics, Dundas, Ontario, Canada ABSTRACT There is a growing need to automate the gas tungsten arc welding process for fabrication and repair of nuclear...
Abstract
View Paper
PDF
There is a growing need to automate the gas tungsten arc welding process for fabrication and repair of nuclear components due to an increasing shortage of experienced welders. Therefore, a collaborative effort has been performed in this study to develop a fully autonomous gas tungsten arc welding system with adaptive capabilities. The system employs the application of two neural networks that have been presented in. The first utilizes a vision based convolutional neural network to perform real time control of the filler wire entry position into the weld pool. The second predicts optimal weld parameters and torch positioning for each weld pass deposited within a multi-pass groove. A commercialization path for the technology is in-progress, with the artificial intelligent algorithms currently being incorporated and tested on commercially available equipment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 74-85, October 22–25, 2013,
... were performed, showing that for the short term, the optimized alloy had better creep properties. Based on the results, one modified alloy 263 composition was selected and a new trial melt / forging was made (Ø160mm). Longer ageing was performed (750°C/3,000hours) and the optimized alloy showed...
Abstract
View Paper
PDF
The EU NextGenPower-project aims at demonstrating Ni-alloys and coatings for application in high-efficiency power plants. Fireside corrosion lab and plants trials show that A263 and A617 perform similar while A740H outperforms them. Lab tests showed promising results for NiCr, Diamalloy3006 and SHS9172 coatings. Probe trials in six plants are ongoing. A617, A740H and A263 performed equally in steamside oxidation lab test ≤750°C while A617 and A740H outperformed A263 at 800°C; high pressure tests are planned. Slow strain rate testing confirmed relaxation cracking of A263. A creep-fatigue interaction test program for A263 includes LCF tests. Negative creep of A263 is researched with gleeble tests. A263 Ø80 - 500mm trial rotors are forged with optimized composition. Studies for designing and optimizing the forging process were done. Segregation free Ø300 and 1,000mm rotors have been forged. A263 – A263 and A293 – COST F rotor welding show promising results (A263 in precipitation hardened condition). Cast step blocks of A282, A263 and A740H showed volumetric cracking after heat treatment. New ‘as cast’ blocks of optimized composition are without cracks. A 750°C steam cycle has been designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled.
1