Skip Nav Destination
Close Modal
Search Results for
sample orientation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 119 Search Results for
sample orientation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, October 15–18, 2024,
... performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure...
Abstract
View Paper
PDF
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, October 15–18, 2024,
... the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large...
Abstract
View Paper
PDF
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, October 15–18, 2024,
... kg/h. Sampling has been a key topic in order to qualify this new manufacturing process. Tensile, Charpy and CT samples have been taken out in various manufacturing orientations to determine possible an-isometry of the material [3]. A rather smart approach has been made for the manufacturing of pipe...
Abstract
View Paper
PDF
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, October 15–18, 2024,
...—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile...
Abstract
View Paper
PDF
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 11-21, October 21–24, 2019,
... of experimental results obtained by micromechanical testing of single-crystalline NbCo 2 Laves phase samples with varying crystal structure, orientation, and composition. For this purpose, diffusion layers with concentration gradients covering the complete homogeneity ranges of the hexagonal C14, cubic C15...
Abstract
View Paper
PDF
Laves phases are intermetallic phases well known for their excellent strength at high temperatures but also for their pronounced brittleness at low temperatures. Especially in high-alloyed steels, Laves phases were long time regarded as detrimental phases as they were found to embrittle the material. Perusing the more recent literature, it seems the negative opinion about the Laves phases has changed during the last years. It is reported that, if the precipitation morphology is properly controlled, transition metal-based Laves phases can act as effective strengthening phases in heat resistant steels without causing embrittlement. For a targeted materials development, the mechanical properties of pure Laves phases should be known. However, the basic knowledge and understanding of the mechanical behavior of Laves phases is very limited. Here we present an overview of experimental results obtained by micromechanical testing of single-crystalline NbCo 2 Laves phase samples with varying crystal structure, orientation, and composition. For this purpose, diffusion layers with concentration gradients covering the complete homogeneity ranges of the hexagonal C14, cubic C15 and hexagonal C36 NbCo 2 Laves phases were grown by the diffusion couple technique. The hardness and Young's modulus of NbCo 2 were probed by nanoindentation scans along the concentration gradient. Single-phase and single crystalline microcantilevers and micropillars of the NbCo 2 Laves phase with different compositions were cut in the diffusion layers by focused ion beam milling. The fracture toughness and the critical resolved shear stress (CRSS) were measured by in-situ microcantilever bending tests and micropillar compression tests, respectively. The hardness, Young's modulus and CRSS are nearly constant within the extended composition range of the cubic C15 Laves phase, but clearly decrease when the composition approaches the boundaries of the homogeneity range where the C15 structure transforms to the off stoichiometric, hexagonal C36 and C14 structure on the Co-rich and Nb-rich, respectively. In contrast, microcantilever fracture tests do not show this effect but indicate that the fracture toughness is independent of crystal structure and chemical composition of the NbCo 2 Laves phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 945-959, October 15–18, 2024,
... in the transverse and rolling directions. Figure 1. Initial microstructure of 309H plate. A) Low magnification perspective inverse pole figure map, B) Low magnification perspective Cr map, C) sample orientation relative to subfigure A and B. Creep testing was tested with guidance from ASTM E139 [7]. Creep testing...
Abstract
View Paper
PDF
Steels have a proven track record of safe operation in steam power plants for decades. Interest in developing supercritical CO 2 power cycles as a more efficient and sustainable alternative to steam cycles has driven a need to understand steel performance in these new environments. In particular, the potential of the high temperature CO 2 environment to influence the creep behavior of the steel must be determined. Prior research on this topic between the 1960s and 1980s found conflicting conclusions, but nevertheless raised the possibility that carburization during CO 2 exposure may strongly affect the creep behavior. This raises concerns particularly for thin-sectioned components such as compact heat exchangers, where even small rates of carburization can become problematic over long operating lifetimes. To shed light on this issue, this research investigates the creep behavior of austenitic stainless steel 347H and 309H (a higher Cr alternative) at 650°C. Specimens of 0.5, 1.0, and 2.0 mm thickness were tested to further assess the effect of steel thickness. Both steels show a reduction in creep life in CO 2 relative to air, with 309H showing slightly better performance than 374H. Analysis is ongoing to determine the reason for degraded creep properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 253-264, October 21–24, 2019,
... of the VM12-SHC parent metal and the samples which had been exposed to simulated weld thermal cycles. Influence of Simulated Weld Thermal Cycles on Microstructure of VM12-SHC Figure 6 (a) to (f) shows (200 x 200) µm EBSD grain orientation maps for each simulated weld thermal cycle sample with (ai) to (fi...
Abstract
View Paper
PDF
For VM12-SHC 11-12 wt. % Cr steel, there have been no systematic investigations to define the regions or characterise the microstructures within the heat-affected zone (HAZ) of weldments. In similar steels, these regions relate to the Ac 1 and Ac 3 transformation temperatures and can affect weldment performance. In this study, controlled thermal cycles were applied to VM12-SHC parent metal using a dilatometer and the Ac 1 and Ac 3 temperatures were measured for various heating rates. The Ae 1 and Ae 3 temperatures were also calculated by thermodynamic equilibrium modeling. Through dilatometry, thermal cycles were then applied to simulate the microstructures of the classically defined HAZ regions. The microstructural properties of each simulated material were investigated using advanced electron microscopy techniques and micro-hardness testing. It was found that the simulated HAZ regions could be classified as; (1) the completely transformed (CT) region, with complete dissolution of pre-existing precipitates and complete reaustenitisation; (2) the partially transformed (PT) region, exhibiting co-existing original martensite with nucleating austenite microstructures with partial dissolution of precipitates; and (3) the over tempered (OT) region, with no phase transformation but precipitate coarsening and decreased hardness.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1014-1029, August 31–September 3, 2010,
... of the pipe samples. The notches were located in approximately the middle of the weld, and the specimen orientation was L-C per the designations of ASTM E399. This orientation designation means that the long axis of the specimen was in the longitudinal direction of the pipe while the notch...
Abstract
View Paper
PDF
The toughness of girth welds in 9Cr-1Mo-V and 9Cr-0.5Mo-V steel seamless pipe (ASME SA-335 Grades P91 and P92, respectively) made using the flux-cored arc welding (FCAW) process was evaluated. Electrodes from two different suppliers were used for production quality welding of each steel. The welds received post-weld heat-treatment (PWHT) in accordance with the requirements of the ASME Code. The objective of the work was to determine if the fracture toughness of the FCAW welds was acceptable for high-temperature steam piping. Toughness was measured using standard sized Charpy V-notch impact specimens. The specimens were oriented transverse to the weld seam with notch located approximately in the center of the weld metal and parallel to the direction of weld seam. Full-range (lower to upper shelf) Charpy impact energy and shear area curves were developed for each weld joint. These were used to estimate the temperatures corresponding to 30 ft-lb average impact energy. The estimated temperatures were well below the service temperature but were above the typical hydrostatic test temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 365-372, October 15–18, 2024,
... of as-built samples used for evaluating the relative density. Figure 2(a) shows an inverse pole figure (IPF) map overlaid on the image quality (IQ) map of the sample manufactured at 111 J/mm3 × 90°. The build direction corresponds from the bottom to the top of the image. The normal orientation of the sample...
Abstract
View Paper
PDF
Modified 9Cr-1Mo steel was manufactured via laser powder bed fusion (LPBF) using gas atomized powders under various building conditions. Dense samples were obtained at an energy density of 111-125 J/mm 3 . As-built samples were subjected to a normalization and tempering heat treatments. The microstructure of the as-built sample exhibits a duplex structure, comprising coarse columnar δ-ferrite grains and fine martensite grains. In addition, a small amount of retained austenite phase was observed at the interface between δ-ferrite and martensite. The formation of δ-ferrite is attributed to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built microstructure morphology characterized by the columnar δ- ferrite was eliminated after the heat treatments, resulting in a tempered martensitic microstructure that is identical with that obtained through the conventional process. However, an increase in prior austenite grain size was observed when the area fraction of δ-ferrite in the as-built condition was high, due to faster phase transformation kinetics of martensite than that of δ-ferrite during the normalization. This suggests that the prior austenite grain size can be controlled by optimizing the area fraction of δ-ferrite and martensite in the as-built microstructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 441-447, October 21–24, 2019,
.... The initial microstructure pre-heat-treated at 980 °C was a fine-grained structure with grain size of 12 µm, and the -phase particles, comprising 5% of the area, were homogeneously distributed, as shown in our previous study [7,8]. After heating specimen A samples at 980 °C, they were deformed at 980 °C...
Abstract
View Paper
PDF
The behavior of strain-induced abnormal grain growth (AGG) in superalloy 718 has been investigated using compression testing and subsequent heat treatment below the d-phase solvus temperature of 980 °C. The nuclei of AGG grains were slightly newly recrystallized grains by a nucleation because small grains without dislocation was observed in the as- deformed microstructure. AGG was caused by the difference in intragranular misorientation (related to the stored strain energy in a grain) between dynamic recrystallized grains and deformed matrix. The initiation of AGG was retarded with decreasing plastic strain and produced microstructures consisted of larger grains having more complex morphology. It was observed that grain boundary migrated locally in the direction perpendicular to, or mainly in the direction parallel to the S3 {111} twin boundaries along with the formation of high-order twins. As a result of multiple twinning, AGG grains seemed to evolve with the growing directions changed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 714-722, October 11–14, 2016,
... martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were...
Abstract
View Paper
PDF
Microstructure in the gage sections of ruptured GX12CrMoWVNbN10-1-1 cast steel specimens was examined after creep tests under applied stresses ranging from 120 to 160 MPa at T=893 K. The microstructure after tempering consisted of laths with an average thickness of 332 nm. The tempered martensite lath structure was characterized by M 23 C 6 -type carbide particles with an average size of about 105 nm, and MX carbonitrides with an average size of about 45 nm. Precipitation of Laves phase occurred during creep test. The structural changes in the gauge section of the samples were characterized by the evolution of relatively large subgrains with remarkably lowered density of interior dislocations within former martensite laths. MX carbonitrides and M 23 C 6 -type carbide particles increase in size slightly under long-term creep. Microstructural degradation mechanisms during creep in GX12CrMoWVNbN10-1-1 cast steel are discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1380-1388, October 21–24, 2019,
... and the distance of markers introduced with a Vickers hardness tester. Due to compliance of the tensile machine, the total strain is calculated larger than actual specimen elongation as described later. Before testing, crystal orientation analysis was conducted by SEM-EBSD method in order to identify the effect...
Abstract
View Paper
PDF
Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure constituents in deformation. The alloy with nearly lamellar microstructure, in which the volume fraction of β/γ duplex ( V DP ) is 10%, shows elongation of only 0.14%, whereas the alloy with nearly globular β/γ duplex microstructure with V DP of 94% shows elongation of 0.49%. In α 2 /γ lamellar microstructure, obvious strain localization occurs along lamellae and develops at specific regions with loading. In the case of β/γ duplex microstructure, strain localization is observed in γ grains and in β phase regions near the β/γ phase boundary, although no obvious deformation is observed in the β grains. β/γ phase boundaries enhances room temperature ductility of TiAl alloys by inducing multiple slip in γ phase and deformation of β phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, October 15–18, 2024,
.... All creep tests were conducted in the build direction (vertical) orientation. Post-Test Sample Preparation and Metallographic Examination Following creep testing, fracture surface images of each failed sample were captured using a digital Keyence VR-3200 large area measurement system equipped...
Abstract
View Paper
PDF
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... of the thin foils. By placing the sample at a -20° incident angle the 30 kV electron beam travels through the thin (<100 nm) areas of the sample. This greatly reduces the beam-specimen interaction volume as compared to more traditional bulk SEM analysis. Spatial resolutions down to 10 nm for orientation...
Abstract
View Paper
PDF
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 735-746, October 11–14, 2016,
... cooling and a maximum cutting speed of 0.008 mms-1. No significant differences were found between orientations in the cast material, so for later samples only one orientation was used. In the SLM material the direction of one of the cuts was chosen to intersect the build layers in the material so...
Abstract
View Paper
PDF
Additive manufacturing (AM) is a process where, as the name suggests, material is added during production, in contrast to techniques such as machining, where material is removed. With metals, AM processes involve localised melting of a powder or wire in specific locations to produce a part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. These components are often produced from nickel-based superalloys, a group of materials which possess excellent mechanical properties at high temperatures. However, although the microstructural and mechanical property evolution during the high temperature exposure of conventionally produced superalloy materials is reasonably well understood, the effects of prolonged high temperature exposure on AM material are less well known. This research is concerned with the microstructures of components produced using AM techniques and an examination of the effect of subsequent high temperature exposures. In particular, the paper will focus on the differences between cast and SLM IN939 as a function of heat treatment and subsequent ageing, including differences in grain structure and precipitate size, distribution and morphology, quantified using advanced electron microscopy techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1373-1379, October 21–24, 2019,
... in primary slip system between the bcc matrix and the NiAl precipitates is responsible for strong hardening. The B2-NiAl phase was precipitated in the bcc matrix satisfying the cube-on-cube orientation relationship with small misfit strain. The primary slip direction of the bcc matrix and the NiAl...
Abstract
View Paper
PDF
NiAl precipitates with the B2 structure are known to be effective in increasing the strength of ferritic heat-resistant steels. The strengthening mechanism by the NiAl precipitates was examined using Fe-21Al-2Ni and Fe-23Al-6Ni (at%) single crystals. As a result, the difference in primary slip system between the bcc matrix and the NiAl precipitates is responsible for strong hardening. The B2-NiAl phase was precipitated in the bcc matrix satisfying the cube-on-cube orientation relationship with small misfit strain. The primary slip direction of the bcc matrix and the NiAl precipitates are <111> and <001>, respectively. However, in the ferritic alloys, the NiAl precipitates were cut by paired 1/2<111> dislocations in the bcc matrix, resulting in the hardening. The size and volume fraction of the NiAl precipitates strongly influenced the strength. The stress increase by the NiAl precipitates was also discussed quantitatively based on the precipitation hardening theory. Based on the experimental results obtained by the single crystal study, we developed Fe-Al-Ni-Cr-Mo ferritic heat-resistant alloy containing the NiAl precipitates. The alloy exhibited excellent creep properties at 923 K.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 795-802, October 21–24, 2019,
... tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates...
Abstract
View Paper
PDF
The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates are largely rotated and Moss works as sticky ligament in the small-plate-reinforced metal-matrix composites. This may be the reason why the MoSiBTiC alloy exhibits large creep elongation and excellent creep resistance. In other words, the evolution of microstructures infers that the consummation of Mo 5 SiB 2 plate rotation may lead to the initiation of creep rapture process. Therefore, the unique microstructure formed during solidification provides the feature of good mechanical properties for the 1st generation MoSiBTiC alloy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
... area analysis in the dendritic core (DC) and interdendritic region (IDR) with respect to the dendrite structure. Figure 3: A schematic illustration of the orientation of the perpendicular and parallel channel widths for the measurement of the channels for Sample 4. RESULTS AND DISCUSSION Tensile Test...
Abstract
View Paper
PDF
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
... volume of particles onto a 2D C-film. Since the 3D volume from where the particle is extracted is unknown and potentially variable (etch rates are likely to depend on matrix grain orientation), it is not possible to measure the number of particles per unit area unambiguously from these sample types...
Abstract
View Paper
PDF
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 288-302, August 31–September 3, 2010,
... welding 6-inch tube samples arranged in repeating sequences of the candidate alloys and weld overlay material. The manufacture of these test loops was described in a previous paper(3). Figure 1 provides a schematic that shows the orientation of the test loops within the boiler and the steam path through...
Abstract
View Paper
PDF
The Department of Energy and Ohio Coal Development Office jointly sponsored research to evaluate materials for advanced ultrasupercritical (A-USC) coal power plants, testing both monolithic tube materials and weld overlay combinations under real operating conditions. Testing was conducted in the highly corrosive, high-sulfur coal environment of Reliant Energy's Niles Plant Unit 1 boiler in Ohio. After 12 months of exposure, researchers evaluated six monolithic tube materials and twelve weld overlay/tube combinations for their high-temperature strength, creep resistance, and corrosion resistance in both steam-side and fire-side environments. Among the monolithic materials, Inconel 740 demonstrated superior corrosion resistance with the lowest wastage rate, while EN72 emerged as the most effective weld overlay material across various substrates, offering consistent protection against corrosion.
1