Skip Nav Destination
Close Modal
Search Results for
purge dams
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1 Search Results for
purge dams
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 803-836, October 25–28, 2004,
... with “No Backing Gas (NBG)”. Combining this novel technique with the semiautomatic GMAW-S (using inverter technology with a controlled transfer) eliminates all cost associated with the need to provide a backing gas, including installation of purge dams, backing gas, and man-hours associated with implementing...
Abstract
View Paper
PDF
A major cost contributor of P91 pipe welding is the vital requirement of ensuring proper protection of the root or first pass of the weld from oxidation through the use of an inert gas blanket, i.e. backing gas. The necessity for oxidation protection negatively impacts the cost of both weld set-up and the actual welding process of P91 pipe fabrication. In an effort to decrease the associated costs of welding P91, Fluor Corporation has invested in significant research and extensive field-testing to develop the wire/gas mixture that contributes to the breakthrough in welding P91 with “No Backing Gas (NBG)”. Combining this novel technique with the semiautomatic GMAW-S (using inverter technology with a controlled transfer) eliminates all cost associated with the need to provide a backing gas, including installation of purge dams, backing gas, and man-hours associated with implementing these activities.