Skip Nav Destination
Close Modal
Search Results for
pulverized coal power plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 20 Search Results for
pulverized coal power plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 491-505, October 25–28, 2004,
... steam turbine system. It is believed that a 700-deg C class steam turbine system will be realized with Ni-based super alloys and austenitic steels. In the near future, the system with a 700-deg C reheat temperature and 630-deg C main steam temperature is promising for the pulverized coal power plant...
Abstract
View Paper
PDF
Natural gas has long been regarded as the primary energy source for advanced power systems because of its cleanliness and highly efficient nature. Nevertheless, coal is gaining attention again as a stable energy source for power generation. In this paper, high efficiency pulverized coal power plant technology, especially materials and the design for high temperature turbine systems, is discussed. The development of materials has contributed to the high efficiency plant development, so far. The development of 12% Cr steel was key in building the state-of-the-art 600-deg C class steam turbine system. It is believed that a 700-deg C class steam turbine system will be realized with Ni-based super alloys and austenitic steels. In the near future, the system with a 700-deg C reheat temperature and 630-deg C main steam temperature is promising for the pulverized coal power plant because of the need for only moderate development work, low capital expenditure, and its high efficiency.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... Abstract The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term...
Abstract
View Paper
PDF
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 60-73, October 22–25, 2013,
... Abstract Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam...
Abstract
View Paper
PDF
Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam temperature requires that the materials for the boiler pressure parts and steam turbine be upgraded to high-nickel alloys that are more expensive than alloys typically used in existing PC units. This paper explores the economics of A-USC units operating between 595°C and 760°C (1100°F to 1400°F) with no CO 2 removal and with partial capture of CO 2 at an emission limit of 454 kg CO 2 /MW-hr (1000 lb CO 2 /MW-hr) on a gross power basis. The goal of the paper is to understand if the improved efficiency of A-USC would reduce the cost of electricity compared to conventional ultra-supercritical units, and estimate the economically “optimal” steam temperature with and without CO 2 removal.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, xxxvi-xxxvii, October 25–28, 2004,
... Technology for Fossil Power Plants, October 25-28, 2004, Hilton Head Island, South Carolina Copyright © 2005 Preface The efficiency of pulverized coal power plants is a strong function of the steam temperature and pressure. Research to increase both has been pursued worldwide since the energy crisis...
Abstract
View Paper
PDF
Preface for the 2004 Advances in Materials Technology for Fossil Power Plants conference.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1014-1023, October 21–24, 2019,
... of these models are presented in Figure 10 for datasets obtained for the corrosion of austenitic steels in pulverized fuel power plants fired on UK coals, US coals and UK biomass. (a) (b) (c) Figure 10 Examples of PLSR applied to fireside corrosion data generated from exposure of austenitic alloys in power plants...
Abstract
View Paper
PDF
The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead to fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 580-591, October 21–24, 2019,
... are designed with higher efficiency, lower coal consumption and gas emission compared with conventional pulverized coal power plants. The technical advantages of A-USC power plants are achieved by steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi). A limiting factor in achieving this can...
Abstract
View Paper
PDF
The harsh operating conditions of Advanced Ultra-Supercritical (A-USC) power plants, i.e., steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi), require the use of Ni-based alloys with high temperature performance. Currently, the U.S. Department of Energy Fossil Energy program together with Electric Power Research Institute (EPRI) and Energy Industries of Ohio (EIO) is pursuing a Component Test (Comets) project to address material- and manufacturing-related issues for A-USC applications. Oak Ridge National Laboratory (ORNL) is supporting this project in the areas of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness, tensile, air and environmental creep, low cycle fatigue, creep-fatigue, environmental high cycle fatigue, and supporting microstructural characterization.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 53-59, October 22–25, 2013,
... lowered. The bulk of India s utility power generating capacity comprises pulverized coal fired subcritical thermal power plants of 600 MW, 500 MW, 250 MW and 210/ 200 MW 53 ratings, in addition to older plants of lower ratings. In recent years, supercritical power plants of 660 MW and 800 MW have been...
Abstract
View Paper
PDF
India's current installed power generating capacity is about 225,000 MW, of which about 59% is coal based. It is projected that India would require an installed capacity of over 800,000 MW by 2032. Coal is likely to remain the predominant source of energy in India till the middle of the century. India is also committed to reducing the CO 2 emission intensity of its economy and has drawn up a National Action Plan for Climate Change, which, inter alia, lays emphasis on the deployment of clean coal technologies. With this backdrop, a National Mission for the Development of Advanced Ultra Supercritical Technology has been initiated. The Mission objectives include development of advanced high temperature materials, manufacturing technologies and design of equipment. A corrosion test loop in an existing plant is also proposed. Based on the technology developed, an 800 MW Demonstration A-USC plant will be established. Steam parameters of 310 kg/cm 2 , 710 °C / 720 °C have been selected. Work on selection of materials, manufacture of tubes, welding trials and design of components has been initiated. The paper gives details of India's A-USC program and the progress achieved.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
... advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from...
Abstract
View Paper
PDF
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
... from Oak Ridge National Laboratory (ORNL) and managed through the National Energy Technology Laboratory (NETL) began an ambitious pre-competitive research and development project that would lead to higher efficiency coal-fired power plants with reduced CO2 emissions [6,7]. Achieving major increases...
Abstract
View Paper
PDF
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future. INTRODUCTION An effective approach to raise the thermal efficiency and to decrease the CO2, SO2, and NOx emission of coal-fired power plants is to increase the steam parameters...
Abstract
View Paper
PDF
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 55-65, October 11–14, 2016,
... for stainless steels, and life management of high temperature components INTRODUCTION American Electric Power s (AEP) John W. Turk, Jr. Power Plant (AEP Turk), Figure 1, is one of the cleanest, most efficient coal-fueled plants in the United States (US). The 600 MW facility began operation in December 2012...
Abstract
View Paper
PDF
Early supercritical units such as American Electric Power (AEP) Philo U6, the world’s first supercritical power plant, and Eddystone U1 successfully operated at ultrasupercritical (USC) levels. However due to the unavailability of metals that could tolerate these extreme temperatures, operation at these levels could not be sustained and units were operated for many years at reduced steam (supercritical) conditions. Today, recently developed creep strength enhanced ferritic (CSEF) steels, advanced austenitic stainless steels, and nickel based alloys are used in the components of the steam generator, turbine and piping systems that are exposed to high temperature steam. These materials can perform under these prolonged high temperature operating conditions, rendering USC no longer a goal, but a practical design basis. This paper identifies the engineering challenges associated with designing, constructing and operating the first USC unit in the United States, AEP’s John W. Turk, Jr. Power Plant (AEP Turk), including fabrication and installation requirements of CSEF alloys, fabrication and operating requirements for stainless steels, and life management of high temperature components
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 86-97, October 22–25, 2013,
...) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally...
Abstract
View Paper
PDF
Increasing the efficiency of the Rankine regenerative-reheat steam cycle to improve the economics of electric power generation and to achieve lower cost of electricity has been a long sought after goal. Advanced ultra-supercritical (A-USC) development for materials to reach 760C (1400F) is a goal of the U.S. Program on Materials Technology for Ultrasupercritical Coal-Fired Boilers sponsored by the United States (U.S.) Department of Energy and the Ohio Coal Development Office (OCDO). As part of the development of advanced ultra-supercritical power plants in this program and internally funded programs, a succession of design studies have been undertaken to determine the scope and quantity of materials required to meet 700 to 760C (1292 to 1400F) performance levels. At the beginning of the program in 2002, the current design convention was to use a “two pass” steam generator with a pendant and horizontal tube bank arrangement as the starting point for the economic analysis of the technology. The efficiency improvement achieved with 700C (1292F) plus operation over a 600C (1112F) power plant results in about a 12% reduction in fuel consumption and carbon dioxide emissions. The reduced flue gas weight per MW generated reduces clean up costs for the lower sulfur dioxide, nitrogen oxides and particulate emissions. The operation and start up of the 700C (1292F) plant will be similar in control methods and techniques to a 600C (1112F) plant. Due to arrangement features, the steam temperature control range and the once through minimum circulation flow will be slightly different. The expense of nickel alloy components will be a strong economic incentive for changes in how the steam generator is configured and arranged in the plant relative to the steam turbine. To offer a view into the new plant concepts this paper will discuss what would stay the same and what needs to change when moving up from a 600C (1112F) current state-of-the-art design to a plant design with a 700C (1292F) steam generator and turbine layout.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1204-1214, October 21–24, 2019,
... demand is predicted to increase about 20% between 2015 and 2025. In order to meet increasing energy requirements with minimal environmental impact, the search for ways to improve energy efficiency from fossil fuel power plants is unavoidable. There are some technologies for coal utilization...
Abstract
View Paper
PDF
Enhancement of the steam conditions is one of the most effective measures to achieve the goal of higher thermal efficiency. 700°C class A-USC (Advanced Ultra Super Critical Steam Conditions) power plant is one of the remarkable technologies to achieve the goal and reduce CO 2 emissions from fossil fuel power plants. Toshiba has been working on the A-USC development project with subsidy from METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). In this project, A-USC power plants with steam parameters of 35MPa 700/720/720°C were considered. To date, various materials have been developed and tested to verify their characteristics for use in A-USC power plants. And some of these materials are being investigated as to their suitability for use in long term. Together with members of the project, we carried out the boiler component test using a commercially-operating boiler. We manufactured a small-scale turbine casing made of nickel-based alloy, and supplied it for the test. In addition, we manufactured a turbine rotor for turbine rotation tests, and carried out the test at 700°C and rotating speed of 3,600rpm conditions. In this paper, we show the results of the A-USC steam turbine development obtained by the project.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... and a discussion of remaining technical issues will be presented. INTRODUCTION Impetus for utilization of nickel-base alloys for construction of coal-fired power plant components has been provided by ambitious goals for operating parameters and material properties established by various consortia around the world...
Abstract
View Paper
PDF
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... types and coal consumption of all power plants, it is difficult to achieve standardized and quantitative balance between reduction of NOx content and prevention of high temperature corrosion. In specific low-nitrogen combustion retrofitting, in addition to fluke mind for possible high temperature...
Abstract
View Paper
PDF
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... and increasing rate are very high in the last ten years, in other hand, the great efforts to improve the thermal efficiency of the traditional fossil power plants by increasing the steam temperature and pressure are also carried out in this century. The 600 -class ultra-supercritical (USC) coal-fired power...
Abstract
View Paper
PDF
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
.... air-firing combustion carbon dioxide carbonates coal-ash corrosion resistance coal-fired boilers corrosion rates corrosion test oxy-firing combustion reheaters superheaters weld overlays Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1138-1148, October 11–14, 2016,
... emissions from pulverized coal fired power plants can be achieved by increasing the operating temperature (and pressure) of the steam systems, which results in an increase in overall plant efficiency. The growing interest in more efficient electricity generation is driving research to high temperature...
Abstract
View Paper
PDF
Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing tests at a variety of temperatures and environments. In this study, the results of a unique technique involving salt spray testing at high temperatures are presented. The Haynes 282 gamma – prime (γ’) strengthened alloy fabricated by means of three different manufacturing processes: HAYNES 282 WROUGHT alloy, Haynes 282-SINT alloy, and finally Haynes 282-CAST alloy have been tested. The materials have been exposed to a salt spray corrosion atmosphere using 1% NaCl - 1% Na 2 SO 4 . Post exposure investigations have included SEM, EDS and XRD examinations. The test using salt spray of 1% NaCl - 1% Na 2 SO 4 water solution at 550 °C for 500 hours indicted no influence on the corrosion products formation, where Cr 2 O 3 has been developed in all three alloys, whereas NiO has been found only in Haynes 282-CAST material. On the other hand, it has been found that the fabrication process of HAYNES 282 alloy strongly influences the corrosion products formation under the high temperature exposures.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
.... Research Progress of Surface Modification on Coal-fired Power Plant Boiler Tubes. Proceedings of the CSEE, 2017, 37(1): 149-160 (in Chinese). [6] Purbolaksono J, Ahmad J, Beng L C, et al. Failure Analysis on a Primary Superheater Tube of a Power Plant. Engineering Failure Analysis, 2010,17(1). [7] Ding K.Q...
Abstract
View Paper
PDF
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 771-782, October 21–24, 2019,
..., Fireside Corrosion of Superheater Materials in Coal/Biomass Co-fired Advanced Power Plants Oxidation of Metals, Vol. 80, No. 5-6 (2013), pp. 529-540. doi.org/10.1007/s11085-013-9394-y [24] Barcos, M.-P. et al, The effect of long term exposure in oxidizing and corroding environments on the tensile...
Abstract
View Paper
PDF
Key components within gas turbines, such as the blades, can be susceptible to a range of degradation mechanisms, including hot corrosion. Hot corrosion type mechanisms describe a sequence of events that include the growth and fluxing of protective oxide scales followed by the degradation of the underlying coating/alloy; this can significantly reduce component lifetimes. To better understand the progress of this type of damage mechanism, a model of hot corrosion progression with both time and corrosive deposit flux is presented for IN738LC and compared to experimental test data collected at 700 °C for four different deposit fluxes. One approach to the interpolation of model parameters between these four fluxes is illustrated. Of particular importance is that the model accounts for the statistical variation in metal loss though the use of Weibull statistics.