Skip Nav Destination
Close Modal
Search Results for
precipitation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 459
Search Results for precipitation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 131-142, October 22–25, 2013,
... Abstract To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing...
Abstract
View Papertitled, Creep-Rupture Behavior of <span class="search-highlight">Precipitation</span>-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
View
PDF
for content titled, Creep-Rupture Behavior of <span class="search-highlight">Precipitation</span>-Strengthened Ni-Based Alloys Under Advanced Ultrasupercritical Steam Conditions
To achieve the necessary creep-rupture lifetimes at the temperatures and pressures associated with advanced ultrasupercritical (A-USC) steam conditions (100,000 h at 100 MPa and 760°C), precipitation-strengthened nickel-based alloys are required for the superheater and reheater tubing in A-USC boilers. Two alloys were considered to have potential for this application: Inconel 740 and Haynes 282 alloy. In support of this application, creep-rupture testing of several heats of Inconel 740 was conducted over a range of temperatures and stresses to develop confidence in qualitatively predicting creep lifetimes under conditions relevant to A-USC steam conditions, with the longest rupture times exceeding 30,000 h. For comparison, the creep-rupture behavior of Haynes 282 alloy was mapped as a function of temperature and stress, but with a significantly smaller dataset. Only a small difference in creep-rupture results between Inconel 740 and Inconel 740H was found although the latter alloy showed significantly greater resistance to η phase formation during testing. Little effect of prior aging treatments (for setting the γ′ precipitate structure) on creep-rupture behavior was observed. Results from a modified power law analysis showed that, while both Inconel 740 and Haynes 282 are projected to meet the A-USC lifetime requirements, the latter offered the potential for better long-term creep resistance.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 586-595, October 22–25, 2013,
... Abstract In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference...
Abstract
View Papertitled, Misorientation Change Caused by the <span class="search-highlight">Precipitation</span> Strengthening through Several MX Type <span class="search-highlight">Precipitates</span> in High Cr Ferritic Creep Resistant Steels
View
PDF
for content titled, Misorientation Change Caused by the <span class="search-highlight">Precipitation</span> Strengthening through Several MX Type <span class="search-highlight">Precipitates</span> in High Cr Ferritic Creep Resistant Steels
In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference to the creep test and creep interrupting test. VN precipitation increased the creep strength if the content was higher than 0.02%. Simultaneous addition of Nb and V in the specimen resulted in the complex NbC-VN precipitates even in the as-heat-treated specimens. The coherent and fine-needle-type VN was also detected in the steel. These precipitates are expected to increase the creep strength according to the creep strain curves. V variation up to 0.02% did not affect the crystallographic character of the grain boundary in the as-heat-treated specimens. Nb variation affected the crystallographic character of the grain boundary significantly because of the grain refinement effect of NbC. VN precipitation during the creep test restricted the crystallographic misorientation-angle-profile degradation. Integrating all intragranular precipitates, VN, restricts the crystallographic degradation significantly. The long-term creep test results and the precise precipitation analysis will be disclosed by the presentation.
Proceedings Papers
Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
... plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect...
Abstract
View Papertitled, <span class="search-highlight">Precipitation</span> Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
View
PDF
for content titled, <span class="search-highlight">Precipitation</span> Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1104-1115, October 22–25, 2013,
... Abstract Precipitation of Z-phase, Cr(V,Nb)N, is known to negatively affect creep properties of 9-12%Cr steels for power plant applications as it dissolves finely distributed MX particles, (V,Nb)N, especially in high Cr steels. As the Z-phase precipitates slowly as large particles, this causes...
Abstract
View Papertitled, <span class="search-highlight">Precipitation</span> Process of Z-Phase in 9-12%Cr Steels
View
PDF
for content titled, <span class="search-highlight">Precipitation</span> Process of Z-Phase in 9-12%Cr Steels
Precipitation of Z-phase, Cr(V,Nb)N, is known to negatively affect creep properties of 9-12%Cr steels for power plant applications as it dissolves finely distributed MX particles, (V,Nb)N, especially in high Cr steels. As the Z-phase precipitates slowly as large particles, this causes a net drop in precipitation strengthening. Two model alloys containing 9 and 12%Cr, but otherwise having similar composition, were produced in order to quantify the difference in Z-phase precipitation speed at different Cr levels. The nitride precipitation behavior was followed at different temperatures using TEM and XRD, allowing for a quantification of the Z-phase precipitation. The Z-phase was found to precipitate 20-50 times faster in the 12%Cr steel compared to 9%Cr steel in the temperature range 600- 650°C. The transformation of MX into Z-phase was followed in a Ta containing alloy without V or Nb. In this alloy the Z-phase precipitates very quickly, and thus appears as finely distributed particles which have the same strengthening effect as MX particles. Investigations using atomic resolution microscopy showed how Cr diffuses from the matrix into the TaN MX particles and gradually transforms them both chemically and crystallographically into Z-phase CrTaN particles.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1163-1172, October 22–25, 2013,
... the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM...
Abstract
View Papertitled, Modelling and Optimizing <span class="search-highlight">Precipitation</span> in Creep Resistant Austenitic Steel 25Cr-20Ni-Nb-N
View
PDF
for content titled, Modelling and Optimizing <span class="search-highlight">Precipitation</span> in Creep Resistant Austenitic Steel 25Cr-20Ni-Nb-N
25Cr-20Ni-Nb-N (Tp310HCbN) steel is a promising austenitic steel for applications in superheater tubes in coal fired thermal power plants due to the high creep strength and oxidation resistance. In this work, the microstructural evolution of this material during heat treatment and thermal ageing has been investigated. The investigations were carried out by Light Optical Microscopy (LOM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDS). Besides, equilibrium and Scheil calculations were carried out using the thermodynamic software MatCalc to analyse the stable phases and the solidification process, respectively. Precipitation calculations during solution annealing and subsequent ageing at 650 and 750°C were performed to predict the phase fraction and precipitates radius up to 10.000h ageing time. SEM and TEM investigations of aged specimens revealed the presence of six different precipitates: M 23 C 6 , Cr 2 N, sigma, Z-phase, eta-phase (Cr 3 Ni 2 Si(C,N)) and Nb(C,N). These precipitates were predicted and confirmed by MatCalc simulations. The calculated phase fraction and mean radius show good agreement with experimental data. Finally, simulations of different Cr-, C- and N-content in Tp310HCbN were performed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1292-1303, October 22–25, 2013,
... Abstract The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up...
Abstract
View Papertitled, The New Metallurgical <span class="search-highlight">Precipitation</span> Strengthening Model of W Containing Advanced High Cr Ferritic Creep Resistant Steels
View
PDF
for content titled, The New Metallurgical <span class="search-highlight">Precipitation</span> Strengthening Model of W Containing Advanced High Cr Ferritic Creep Resistant Steels
The Cr and W effect on the creep strength of ferritic steels were studied using the new strengthening hypothesis, precipitation strengthening mechanism, by examining the residual aligned precipitates consisting of W and Cr. In 2 mass% W-containing steel, the increase in Cr content up to 10 mass% resulted in the creep life extension. However, the Cr content higher than 11 mass% decreased the creep life. In 9 mass% Cr-containing steel, the increase in W content decreased the creep deformation rate with creep time. However, it also shortened the time to reach the minimum creep rate. Therefore, optimum Cr and W contents possibly resulted in the optimum alloy design. To understand the effect of W and Cr contents on creep strength, the precipitation strengthening hypothesis by the precipitates at the block boundary must be introduced. The residual aligned precipitation line is supposedly an effective obstacle for the dislocation motion at the interparticle space of the aligned precipitates. The new hypothesis will be activated after block boundary migration. It occurs during the acceleration creep period. On the basis of the hypothesis, creep strength was expressed as the summation of threshold creep stress and effective internal creep stress. According to the experimental data of microstructure recovery, the effective internal stress decreased with creep deformation and consequently vanished. In such cases, creep strength is decided only by the threshold stress of creep. Integrating all, we concluded that the creep deformation mechanism of ferritic creep-resistant steel possibly transits from the viscous dislocation gliding mode to the microstructure recovery driven type mode during the acceleration creep.
Proceedings Papers
Computer Simulation of Precipitation in a Complex 9-12% Cr-Steel During Fabrication Heat Treatment
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1064-1070, October 25–28, 2004,
... Abstract A novel multi-component, multi-particle, multi-phase precipitation model is used to predict the precipitation kinetics in complex 9-12% Cr steels investigated within the European COST project. These steels are used for tubes, pipes, casings and rotors in USC (ultra super critical...
Abstract
View Papertitled, Computer Simulation of <span class="search-highlight">Precipitation</span> in a Complex 9-12% Cr-Steel During Fabrication Heat Treatment
View
PDF
for content titled, Computer Simulation of <span class="search-highlight">Precipitation</span> in a Complex 9-12% Cr-Steel During Fabrication Heat Treatment
A novel multi-component, multi-particle, multi-phase precipitation model is used to predict the precipitation kinetics in complex 9-12% Cr steels investigated within the European COST project. These steels are used for tubes, pipes, casings and rotors in USC (ultra super critical) steam power plants for the 21 st century. In the computer simulations, the evolution of the precipitate microstructure is monitored during the entire fabrication heat treatment including casting, austenitizing, several annealing treatments. The main interest lies on the concurrent nucleation, growth, coarsening and dissolution of different types of precipitates.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1183-1197, October 25–28, 2004,
... of large aluminum nitride precipitates, which limited the formation of beneficial vanadium nitride precipitates, leading to reduced creep strength. These findings suggest that even within the ASTM specification limits, a low N:Al ratio can negatively impact the performance of Grade 91 steel. aluminum...
Abstract
View Papertitled, Aluminum Nitride <span class="search-highlight">Precipitation</span> in Low Strength Grade 91 Power Plant Steels
View
PDF
for content titled, Aluminum Nitride <span class="search-highlight">Precipitation</span> in Low Strength Grade 91 Power Plant Steels
This paper investigates the cause of premature failures in certain Grade 91 steel components used in UK power plants. The failures were linked to both low material hardness and specific chemical compositions that fell within ASTM specifications but had a low nitrogen-to-aluminum ratio (N:Al). The investigators examined eight material batches, including those involved in failures, new stock, and in-service components with similar properties. Testing confirmed these materials had lower creep resistance compared to standard Grade 91 steel. Microscopic analysis revealed the presence of large aluminum nitride precipitates, which limited the formation of beneficial vanadium nitride precipitates, leading to reduced creep strength. These findings suggest that even within the ASTM specification limits, a low N:Al ratio can negatively impact the performance of Grade 91 steel.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 972-985, August 31–September 3, 2010,
... Abstract The microstructural evolution has been investigated for an 18Cr-12Ni stainless steel (347HFG) that has been subject to a thermo-mechanical treatment to obtain a fine grain size (ASTM 7-10). In particular, sigma phase precipitation and growth has been evaluated. Samples of 347HFG...
Abstract
View Papertitled, Sigma Phase <span class="search-highlight">Precipitation</span> in 347HFG Stainless Steel for Supercritical Power Plant Operation
View
PDF
for content titled, Sigma Phase <span class="search-highlight">Precipitation</span> in 347HFG Stainless Steel for Supercritical Power Plant Operation
The microstructural evolution has been investigated for an 18Cr-12Ni stainless steel (347HFG) that has been subject to a thermo-mechanical treatment to obtain a fine grain size (ASTM 7-10). In particular, sigma phase precipitation and growth has been evaluated. Samples of 347HFG stainless steel have been isothermally heat treated to reproduce and accelerate the ageing conditions experienced in-service at temperatures between 600 and 750 °C for up to 10,000 hours. Results have shown that sigma phase is precipitated at triple points and along grain boundaries after as little as 1000 hours which is contrary to thermodynamic predictions. In addition X-ray diffraction (XRD) and image analysis has been carried out to semi-quantitatively measure the amount of sigma phase present. The area fraction of sigma has been found to be 2.77 and 2.23 percent at 700 and 750 °C respectively. This is a higher volume fraction of sigma phase than has been previously observed in regular 347H at these conditions. It is thought that this is due to the reduced grain size that has provided an increase in nucleation sites and diffusion paths that can enhance the precipitation and growth of sigma phase. The results from this study are discussed with regards to the effect of precipitation on the service life of a 347HFG stainless steel tube operating in advanced supercritical boilers.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 197-207, October 3–5, 2007,
... Abstract The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc...
Abstract
View Papertitled, Prediction of the Loss of <span class="search-highlight">Precipitation</span> Strengthening in Modern 9-12% Cr Steels – A Numerical Approach
View
PDF
for content titled, Prediction of the Loss of <span class="search-highlight">Precipitation</span> Strengthening in Modern 9-12% Cr Steels – A Numerical Approach
The creep resistance of 9-12% Cr steels is significantly influenced by the presence and stability of different precipitate populations. Numerous secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service. Based on the software package MatCalc, the evolution of these precipitates during the thermal treatment of the COST 522 steel CB8 is simulated from the cooling process after cast solidification to heat treatment and service up to the aspired service life time of 100.000h. On basis of the results obtained from these simulations in combination with a newly implemented model for evaluation of the maximum threshold stress by particle strengthening, the strengthening effect of each individual precipitate phase, as well as the combined effect of all phases is evaluated - a quantification of the influence of Z-Phase formation on the long-term creep behaviour is thus made possible. This opens a wide field of application for alloy development and leads to a better understanding of the evolution of microstructural components as well as the mechanical properties of these complex alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 90-95, October 21–24, 2019,
... Abstract The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase...
Abstract
View Papertitled, Microstructure Control Using the Formation of Laves Phase through Interphase <span class="search-highlight">Precipitation</span> in Ferritic Heat Resistant Steels
View
PDF
for content titled, Microstructure Control Using the Formation of Laves Phase through Interphase <span class="search-highlight">Precipitation</span> in Ferritic Heat Resistant Steels
The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase into the α-ferrite phase. One of the problems on the formation of the fine Laves phase dispersion is a poor heat treatability; the interphase precipitation (δ-Fe→γ-Fe+Fe 2 Hf) is competitive with the precipitation of Laves phase from the δ phase in the eutectoid-type reaction pathway (δ→δ+Fe 2 Hf). In the present work, the effect of supersaturation on the precipitation of Laves phase from δ phase (δ→δ+Fe 2 Hf) and the δ→γ transformation in the reaction pathway was investigated by changing the Hf and Cr contents. The results obtained suggest that it is effective to have a high supersaturation for the precipitation of Laves phase and an adequately high supersaturation for the δ→γ transformation at the same time in order to widen the window of the interphase precipitation
Proceedings Papers
Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 96-103, October 21–24, 2019,
... and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep...
Abstract
View Papertitled, Improvement in Creep and Steam Oxidation Resistance of <span class="search-highlight">Precipitation</span> Strengthened Ferritic Steels
View
PDF
for content titled, Improvement in Creep and Steam Oxidation Resistance of <span class="search-highlight">Precipitation</span> Strengthened Ferritic Steels
To save fossil fuel resources and to reduce CO 2 emissions, considerable effort has been directed toward researching and developing heat-resistant materials that can help in improving the energy efficiency of thermal power plants by increasing their operational temperature and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep tests for 15Cr-1Mo-6W-3Co-V-Nb steels with ferrite matrix strengthened by a mainly Laves phase (Fe 2 W) showed that the creep strengths of 15Cr ferritic steel at temperatures ranging from 923 K to 1023 K were twice as high as those of conventional 9Cr ferric heat-resistant steel. 15Cr steels have higher steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions, especially that of carbon, in order to improve the high-temperature creep strength.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 227-234, October 21–24, 2019,
... Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered...
Abstract
View Papertitled, On the <span class="search-highlight">Precipitation</span> of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
View
PDF
for content titled, On the <span class="search-highlight">Precipitation</span> of the Laves Phase Particles in a Martensitic 10% Cr-3% Co-3% W-0.2% Re Steel during Creep at 650°C
The size and distribution of the Laves phase particles in a 9.85Cr-3Co-3W-0.13Mo-0.17Re- 0.03Ni-0.23V-0.07Nb-0.1C-0.002N-0.008B steel subjected to creep rupture test at 650°C under an applied stresses of 160-200 MPa with a step of 20 MPa were studied. After heat treatment consisting of normalizing of 1050°C and tempering of 770°C, M 23 C 6 and Fe 3 W 3 C carbides with the mean sizes of 67±7 and 40±5 nm, respectively, were revealed along the boundaries of prior austenite grains and martensitic laths whereas round NbX carbonitrides were found within martensitic laths. During creep metastable Fe 3 W 3 C carbides dissolved and the stable Laves phase particles precipitated; volume fraction of Laves phase increases with time. The Laves phase particles nucleated on the interfacial boundaries Fe 3 W 3 C/ferrite during first 100 h of creep and provided effective stabilization of tempered martensitic lath structure until their mean size less than 150 nm.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
... Abstract Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature...
Abstract
View Papertitled, Grain Boundary Design Using <span class="search-highlight">Precipitation</span> of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
View
PDF
for content titled, Grain Boundary Design Using <span class="search-highlight">Precipitation</span> of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
... cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size...
Abstract
View Papertitled, Influence of Initial <span class="search-highlight">Precipitated</span> γ′′ Phase Microstructure on δ-Phase <span class="search-highlight">Precipitation</span> Behavior in Alloy 718
View
PDF
for content titled, Influence of Initial <span class="search-highlight">Precipitated</span> γ′′ Phase Microstructure on δ-Phase <span class="search-highlight">Precipitation</span> Behavior in Alloy 718
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1305-1313, October 21–24, 2019,
... Abstract 700°C advanced ultra-supercritical system and supercritical CO 2 turbine system are developed for high efficiency turbine systems for next generation. This study covered the feasibility of creep life assessment of γ’-Ni 3 (Al,Ti) precipitation strengthened Ni-based superalloy rotor...
Abstract
View Papertitled, Creep Life Assessment of γ′ <span class="search-highlight">Precipitation</span> Strengthened Ni-Based Superalloys for High Efficiency Turbine Components
View
PDF
for content titled, Creep Life Assessment of γ′ <span class="search-highlight">Precipitation</span> Strengthened Ni-Based Superalloys for High Efficiency Turbine Components
700°C advanced ultra-supercritical system and supercritical CO 2 turbine system are developed for high efficiency turbine systems for next generation. This study covered the feasibility of creep life assessment of γ’-Ni 3 (Al,Ti) precipitation strengthened Ni-based superalloy rotor material, TOS1X-2, a modified alloy of UNS N06617 for these systems, based on hardness measurement method. It was found that the hardness of TOS1X-2 was governed by the change in precipitation strengthening and strain hardening during creep. The clear relationship between hardness increase in crept portion and macroscopic creep strain was observed, suggesting that it might be possible to estimate the creep strain or initiation of acceleration from hardness measurement. Microstructure inhomogeneity and microstructure evolutions during creep especially focused on dispersion of creep strain were characterized by EBSD quantitative analysis. It was found that creep strain was accumulated along the grain boundary, while it was relatively absent in coarse grains with low Schmid factor of {111} <110> slip system in fcc structure. The upper limit of hardness scatter band is thought to be important, since it represents the local and critical creep damage of the alloy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1408-1417, October 21–24, 2019,
... Abstract The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through...
Abstract
View Papertitled, Experimental and Computational Study on Grain Boundary and Grain Interior <span class="search-highlight">Precipitation</span> of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
View
PDF
for content titled, Experimental and Computational Study on Grain Boundary and Grain Interior <span class="search-highlight">Precipitation</span> of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through experimental study at different temperatures and thermokinetic calculation. The steel samples were prepared by arc melting followed by 65% cold rolling. Subsequently, the samples were solution treated within the γ single-phase region to control the grain size to approximately 150 μm. Aging of the solution-treated samples was carried out at temperatures ranging from 973 K to 1473 K for up to 3600 hours. Microstructural observations were conducted using FE-SEM, and the chemical compositions of the γ matrix and precipitates of Laves and δ phases were analyzed using EPMA. The precipitation modeling was performed using MatCalc software, utilizing a thermodynamic database constructed by our research group to calculate the chemical potential of each phase. Classical nucleation theory was applied for nucleation, while the SFFK model was employed for the growth and coarsening stages. Distinct phases were defined for grain boundary and grain interior Laves phase, with all precipitates assumed to have spherical morphology in the calculations. The precipitation start time was defined as the time when the precipitate fraction reached 1%. Experimental results indicated that above 973 K, Laves phase nucleation primarily occurred on grain boundaries before extending into the grain interior, with the nose temperature located around 1273 K. To replicate the experimentally determined Time-Temperature-Precipitation (TTP) diagram, interaction parameters among elements were adjusted. Additionally, by introducing lower interfacial energy between the γ matrix and Laves phase, the TTP diagram was successfully reproduced via calculation, suggesting relative stability at the interface.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
... Abstract In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect...
Abstract
View Papertitled, <span class="search-highlight">Precipitation</span> Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) Phases in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
View
PDF
for content titled, <span class="search-highlight">Precipitation</span> Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) Phases in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, February 25–28, 2025,
... and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers. austenitic stainless steel boilers creep damage metal temperature estimation precipitation Advances in Materials, Manufacturing, and Repair for Power Plants...
Abstract
View Papertitled, Metal Temperature Estimation in High-Strength Austenitic Stainless Steels through <span class="search-highlight">Precipitation</span> Analysis
View
PDF
for content titled, Metal Temperature Estimation in High-Strength Austenitic Stainless Steels through <span class="search-highlight">Precipitation</span> Analysis
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions. austenitic stainless steel chromium...
Abstract
View Papertitled, Characterization of <span class="search-highlight">Precipitation</span>-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of <span class="search-highlight">Precipitation</span>-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
1