Skip Nav Destination
Close Modal
Search Results for
plastic deformed materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 138
Search Results for plastic deformed materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
... of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found...
Abstract
View Papertitled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 690-698, February 25–28, 2025,
...) offers a solid-state deformation processing route to metal additive manufacturing, in which the feed material undergoes severe plastic deformation at elevated temperatures. Some of the key advantages of this process are fabrication of fully dense material with fine, equiaxed grain structures. This work...
Abstract
View Papertitled, Friction Stir Layer Deposition of a High Entropy Alloy for Nuclear Applications
View
PDF
for content titled, Friction Stir Layer Deposition of a High Entropy Alloy for Nuclear Applications
Friction Stir Layer Deposition on a Cu-containing high-entropy alloy (HEA) has been performed for its suitability of the core component of nuclear materials. Excellent irradiation resistance in this Cu-containing HEA has been reported previously. Friction stir layer deposition (FSLD) offers a solid-state deformation processing route to metal additive manufacturing, in which the feed material undergoes severe plastic deformation at elevated temperatures. Some of the key advantages of this process are fabrication of fully dense material with fine, equiaxed grain structures. This work reports the detailed microstructure of the FSLD product, and it discusses the grain refinement and micro-hardness variation observed in FSLD product.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 304-314, October 21–24, 2019,
... is 100% Ferrite. The latter condition is of interest because of its widespread occurrence on operating power plant with grade 91 pipework systems. BACKGROUND AND MOTIVATION Manufacture and Service-Induced Plastic Deformation Material subject to pre-straining may incur a change in high temperature...
Abstract
View Papertitled, Pre-Straining Effect on the Creep Behavior of Impression Creep Tests for a P91 Steel at 600 °C
View
PDF
for content titled, Pre-Straining Effect on the Creep Behavior of Impression Creep Tests for a P91 Steel at 600 °C
This paper investigates the effect of high temperature tensile strain on subsequent creep strength in grade 91 steel. Failed hot tensile specimens have been sectioned at various positions along the specimen axis, and therefore at different levels of hot tensile strain, to obtain material for creep strength evaluation. Because of the limited amount of material available for creep testing obtained in this way, creep testing has been carried out using the specialised small-scale impression creep testing technique. The grade 91 material has been tested in both the normal martensitic condition and in an aberrant mis-heat treated condition in which the microstructure is 100% Ferrite. The latter condition is of interest because of its widespread occurrence on operating power plant with grade 91 pipework systems.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 99-110, February 25–28, 2025,
... in the temperature range of 600 to 800°C for applied stresses of 40 to 265 MPa. CONSTITUTIVE MODEL The advanced mechanistic constitutive model presented here is based on the studies in [9-11]. The plastic deformation of the material is accommodated by dislocation glide, dislocation climb, and vacancy diffusion...
Abstract
View Papertitled, Experimental and Numerical Characterization of High Temperature <span class="search-highlight">Deformation</span> Behavior of 347H Stainless Steel
View
PDF
for content titled, Experimental and Numerical Characterization of High Temperature <span class="search-highlight">Deformation</span> Behavior of 347H Stainless Steel
This study investigates how temperature affects the plasticity and thermal creep behavior of 347H stainless steel under uniaxial tension. The research combined experimental testing with advanced computational modeling. Two types of experiments were conducted: uniaxial tensile tests at temperatures from 100°C to 750°C using strain rates of ~10⁻⁴ s⁻¹, and creep tests at temperatures between 600°C and 750°C under various stress levels. These experimental results were used to develop and validate a new integrated mechanistic model that can predict material behavior under any loading condition while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide, dislocation climb, and vacancy diffusional creep. The model accounts for internal stress distribution within single crystals and considers how precipitates and solute atoms (both interstitial and substitutional) affect dislocation movement. After validation against experimental data, the model was used to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 962-971, August 31–September 3, 2010,
... Abstract HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material...
Abstract
View Papertitled, Creep Rupture Properties of HR6W for Advanced-USC Boilers
View
PDF
for content titled, Creep Rupture Properties of HR6W for Advanced-USC Boilers
HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for A-USC plant application. The deterioration of long term creep rupture strength has been reported with respect to metastable authentic stainless steel due to cold working. However the creep strength of the 20% pre-strained HR6W increased. HR6W creep strength showed notch strengthening behavior. The creep ruptured strength of the GTAW joints was nearly the same as that of the solution treated material, and all specimens fractured within the base metal. The creep ductility of the solution treated materials decreased under low stress conditions. The intergranular fracture is considered to be caused of ductility drop. This tendency is the same as for austenitic stainless steel. The potential of HR6W as a material for A-USC was revealed from the standpoint of creep rupture properties.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... neutral zone crack plastic deformation residual stress analysis stress relaxation tube bending Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal httpsdoi.org/10.31399/asm.cp.am-epri...
Abstract
View Papertitled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
View
PDF
for content titled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature. deformation galling wear hardfacing hardness microstructure phase transformations plastic strain stainless steel Stellite Advances in Materials...
Abstract
View Papertitled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
View
PDF
for content titled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 441-447, October 21–24, 2019,
... energy in a grain) between dynamic recrystallized grains and deformed matrix. The initiation of AGG was retarded with decreasing plastic strain and produced microstructures consisted of larger grains having more complex morphology. It was observed that grain boundary migrated locally in the direction...
Abstract
View Papertitled, Generation Behavior of Abnormally Large Grain in Superalloy 718
View
PDF
for content titled, Generation Behavior of Abnormally Large Grain in Superalloy 718
The behavior of strain-induced abnormal grain growth (AGG) in superalloy 718 has been investigated using compression testing and subsequent heat treatment below the d-phase solvus temperature of 980 °C. The nuclei of AGG grains were slightly newly recrystallized grains by a nucleation because small grains without dislocation was observed in the as- deformed microstructure. AGG was caused by the difference in intragranular misorientation (related to the stored strain energy in a grain) between dynamic recrystallized grains and deformed matrix. The initiation of AGG was retarded with decreasing plastic strain and produced microstructures consisted of larger grains having more complex morphology. It was observed that grain boundary migrated locally in the direction perpendicular to, or mainly in the direction parallel to the S3 {111} twin boundaries along with the formation of high-order twins. As a result of multiple twinning, AGG grains seemed to evolve with the growing directions changed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 470-478, October 21–24, 2019,
... analysis results in center region of gauge section in P/M and CW material tensile specimens at 1373K/1.0x10-1s-1. GROD parameter in EBSD analysis indicates local deformation in the sample. CW material showed uniform deformation in whole grains (Fig.9(d On the other hand, local plastic strain accumulated...
Abstract
View Papertitled, Effect of Prior Particle Boundary on <span class="search-highlight">Deformability</span> of Powder Processed Turbine Disk Alloy
View
PDF
for content titled, Effect of Prior Particle Boundary on <span class="search-highlight">Deformability</span> of Powder Processed Turbine Disk Alloy
The powder metallurgy (P/M) process has been applied to a high strength turbine disk alloy. It is known that P/M alloys show characteristic microstructures such as prior powder boundaries (PPB) compared to microstructures of conventional cast and wrought (CW) alloys. High temperature tensile tests were conducted on CW and P/M processed alloy720Li in order to reveal the effect of temperature and strain rate on deformation behavior and to demonstrate the effect of microstructure derived from P/M process on deformability. The fracture mode of the P/M material changed from grain interior fracture to fracture around large PPB with an increment of strain rate. In addition, samples ruptured at higher temperature showed grain boundary fracture regardless of strain rate. On the other hand, the CW material showed good deformability with chisel point fracture in the entire temperature and strain rate condition range. In the P/M material, melting of grain boundaries occurred at super solvus temperature conditions. Large PPB acts as nucleation site of voids at higher strain rate conditions. Precipitation strengthening by γ’ phase degrades deformability at sub solvus temperature conditions. However, deformability near the solvus temperature and low strain rate condition in as HIPed P/M material increased with fine grain size distribution in spite of the presence of large grains resulting from PPB.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, February 25–28, 2025,
.... A key feature of the analyses is the use of inelastic constitutive models to represent the cyclic plastic and creep behavior of the material. A nonlinear kinematic hardening model was used to represent the cyclic stress-strain response and a secondary creep model was used to represent creep deformation...
Abstract
View Papertitled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
View
PDF
for content titled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
... and photographed for analysis. Buttons were cut as close as possible to the fracture surface for analyzing the deformation behavior. The microstructures of the different heat-treated materials were thoroughly characterized by means of microscopy after careful metallographic preparation. Samples for optical...
Abstract
View Papertitled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
View
PDF
for content titled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1380-1388, October 21–24, 2019,
...]Stinville, J. C. et al., Sub-Grain Scale Digital Image Correlation by Electron Microscopy for Polycrystalline Materials during Elastic and Plastic Deformation, Exp. Mech., Vol. 56, No. 2 (2016), pp. 197 216. 1387 [17]Usui, S. et al., In-situ Observation of Deformation and Cracking Behavior in TiAl alloy...
Abstract
View Papertitled, <span class="search-highlight">Deformation</span> Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
View
PDF
for content titled, <span class="search-highlight">Deformation</span> Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure constituents in deformation. The alloy with nearly lamellar microstructure, in which the volume fraction of β/γ duplex ( V DP ) is 10%, shows elongation of only 0.14%, whereas the alloy with nearly globular β/γ duplex microstructure with V DP of 94% shows elongation of 0.49%. In α 2 /γ lamellar microstructure, obvious strain localization occurs along lamellae and develops at specific regions with loading. In the case of β/γ duplex microstructure, strain localization is observed in γ grains and in β phase regions near the β/γ phase boundary, although no obvious deformation is observed in the β grains. β/γ phase boundaries enhances room temperature ductility of TiAl alloys by inducing multiple slip in γ phase and deformation of β phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
... plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix...
Abstract
View Papertitled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
View
PDF
for content titled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
.... There is a good correspondence between 0% offset yield stress and a boundary stress. This indicates that a boundary stress between high- and low-stress regimes is a macroscopic elastic limit where successive plastic deformation of polycrystalline material initiates [2], therefore, the low-stress regime, where...
Abstract
View Papertitled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
View
PDF
for content titled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 400-406, October 11–14, 2016,
... that of the T91 side because austenitic stainless steels have a higher coefficient of thermal expansion than ferritic steels. The mismatch of the thermal deformation causes the thermal stress near the welded part. Shown in Fig. 7 are the distributions of the plastic strain generated in the welded part...
Abstract
View Papertitled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H Boiler Steel Tube
View
PDF
for content titled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H Boiler Steel Tube
Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers. Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress and strain will occur when the temperature changes. Therefore, the dissimilar welded parts require high durability against the repetition of the thermal stresses. SUPER304H (18Cr-9Ni-3Cu-Nb-N) is an austenitic stainless steel that recently has been used for boiler tubes in power plants. In this study, thermal fatigue properties of a dissimilar welded part of SUPER304H were investigated by conducting thermal fatigue tests and finite element analyses. The test sample was a dissimilar welded tube of SUPER304H and T91 (9Cr-1Mo-V-Nb), which is a typical ferritic heat resistant boiler steel.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... specimen showed high plastic deformation in the base material, which led in some cases to an incorrect measurement of the specimen elongation. That was caused by necking of the specimen in the base material and consequently a displacement of the extensometer relative to the specimen surface. Hence, all...
Abstract
View Papertitled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
View
PDF
for content titled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 748-761, October 3–5, 2007,
..., further advancements in deformation and lifetime modeling are essential. Verification requires complex experiments under variable creep conditions and multi-stage creep-fatigue interactions. A key challenge remains the development of methods to translate uniaxial material properties to multiaxial loading...
Abstract
View Papertitled, Improved Methods of Creep-Fatigue Life Assessment of Components
View
PDF
for content titled, Improved Methods of Creep-Fatigue Life Assessment of Components
Enhanced life assessment methods contribute to the long-term operation of high-temperature components by reducing technical risks and increasing economic benefits. This study investigates creep-fatigue behavior under multi-stage loading, including cold start, warm start, and hot start cycles, as seen in medium-loaded power plants. During hold times, creep and stress relaxation accelerate crack initiation. Creep-fatigue life can be estimated using a modified damage accumulation rule that incorporates the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage while accounting for mean stress effects, internal stress, and creep-fatigue interaction. In addition to generating advanced creep, fatigue, and creep-fatigue data, scatter band analyses are necessary to establish design curves and lower-bound properties. To improve life prediction methods, further advancements in deformation and lifetime modeling are essential. Verification requires complex experiments under variable creep conditions and multi-stage creep-fatigue interactions. A key challenge remains the development of methods to translate uniaxial material properties to multiaxial loading scenarios. Additionally, this study introduces a constitutive material model, implemented as a user subroutine for finite element applications, to simulate start-up and shut-down phases of components. Material parameter identification has been achieved using neural networks.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... degradation plastic deformation tensile test yield stress Advances in Materials Technology for Fossil Power Plants Proceedings from the Fifth International Conference R. Viswanathan, D. Gandy, K. Coleman, editors, p 601-615 Copyright © 2008 Electric Power Research Institute Distributed by ASM...
Abstract
View Papertitled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
View
PDF
for content titled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 986-994, August 31–September 3, 2010,
... decreases with decrease of the rolling temperature. Relationship between the deformation structures and the tensile behavior is considered in some details. Introduction Super 304H-type austenitic stainless steels are now considered as advanced structural materials for parts and assemblies of fossil power...
Abstract
View Papertitled, Mechanical Properties and Microstructures of an S304H-Type Steel Subjected to Hot Working
View
PDF
for content titled, Mechanical Properties and Microstructures of an S304H-Type Steel Subjected to Hot Working
The effect of multiple hot rolling in the temperature interval of 700-1000°C (1290-1830°F) on microstructures and tensile behavior of an S304H-type austenitic stainless steel was studied. The structural changes during hot working are characterized by the elongation of original grains towards the rolling axis and the development of new fine grains. The fraction of fine grains and the average grain size increase with increasing the rolling temperature. The multiple hot rolling results in significant strengthening. The offset yield strength approaches 1080 MPa in the sample processed at 700°C (1290°F), while that of 390 MPa is obtained after rolling at 1000°C (1830°F). On the other hand, the tensile strength at elevated temperatures of 600-700°C (1110-1290°F) decreases with a decrease in the rolling temperature. The relationship between the deformation structures and the tensile behavior is considered in some detail.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 276-280, October 22–25, 2013,
... and analyzed from point view of deformability and weldability in the paper. The bending test results showed that tube bent was difficult because of its high strength and limited deforming capacity in solution heat treated + aged condition. Therefore, the material supplied in the solution condition may...
Abstract
View Papertitled, Discussion of Delivered Condition Specified in ASME Code Case 2702 on Inconel 740H Used for A-USC Boiler
View
PDF
for content titled, Discussion of Delivered Condition Specified in ASME Code Case 2702 on Inconel 740H Used for A-USC Boiler
Delivered condition of Inconel740H specified in ASME Code Case 2702 is solution heat treated and aged condition, fabricating performances are also based on the condition, and a re-annealing and aging shall be performed if cold forming to strains is over 5%. These almost harsh requirements bring great inconvenience for its engineering practice and utilization. The comparative bending tests on 740H tubes in solution heat treated + aged condition and solution heat treated condition were performed, and the rules’ reasonability of the specification on delivered condition was discussed and analyzed from point view of deformability and weldability in the paper. The bending test results showed that tube bent was difficult because of its high strength and limited deforming capacity in solution heat treated + aged condition. Therefore, the material supplied in the solution condition may be better from fabricating points. Whether re-solution for the bent tube is performed after bending depends on its bending radius, followed by welding and post weld heat treatment of component (this treatment can also be the aging treatment for annealed sector at the same time), this treating manner can meet regulatory requirements. For solution tubes, however, there are some inconveniences to its engineering application because fewer research studies were carried out on its properties up to now, and no regulations on them were given for the material in the specification. Suggestions are: 1) deeply investigating the properties of tubes in solution condition, including mechanical and fabricating performances, 2) adding the mechanical properties, maximum allowable cold forming to stain without performing re-solution and weld strength reduction factor of solution material to the code case.
1