Skip Nav Destination
Close Modal
Search Results for
plastic deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 138
Search Results for plastic deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 356-364, October 11–14, 2016,
... Abstract A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength...
Abstract
View Papertitled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
View
PDF
for content titled, Neutral Zone Crack and Window Opening Failure in SA213 TP347H Bent Tube
A longitudinal crack and window opening type failure occurred in neutral zone that is applied to least plastic deformation in the bent TP347H tube during operation. From the analysis of residual stress and plastic deformation during the tube bending, there is low creep strength and high residual stress in neutral zone as compared other regions like intrados and extrados. Therefore, failure occurred in neutral zone due to stress relaxation concentrated in grain boundary during operation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
... of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found...
Abstract
View Papertitled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 733-747, October 25–28, 2004,
... loading of flawed specimens and demonstrated using AE for defect revelation. Analysis showed that creep-associated AE is mainly continuous, with repeated loading decreasing burst AE contribution during plastic deformation development. acoustic emission brittle fracture creep test energy piping...
Abstract
View Papertitled, Why it is Possible to Reveal, Recognize, and Assess Creep Stage in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Why it is Possible to Reveal, Recognize, and Assess Creep Stage in Operating High Energy Piping by Quantitative Acoustic Emission Method
Theoretical and experimental investigations, including fracture tests, acoustic emission (AE) studies, fractography, micro-sclerometric analyses, and spectral/chemical analyses of specimens, have established the possibility of revealing, recognizing in-service acquired, age-related, and prefabricated flaws based solely on AE data. Results show a linear dependence between AE and mechanical deformation power of steel specimens in original and creep stage 3a-3b conditions, decreasing fracture load and J1c value for aging steel, creep processes at stage 3a-3b having J-integral value below 0.05J1c, possibility of assessing and distinguishing different flaw development stages with ≥87% accuracy, revealing zones of tough and brittle fracture, and recognizing inclusions/pre-fabricated flaws and assessing individual/interacting flaws. Experiments confirmed the absence of the Kaiser effect under repeated loading of flawed specimens and demonstrated using AE for defect revelation. Analysis showed that creep-associated AE is mainly continuous, with repeated loading decreasing burst AE contribution during plastic deformation development.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 601-615, October 3–5, 2007,
... value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses...
Abstract
View Papertitled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
View
PDF
for content titled, Stress Dependence of Degradation and Creep Rupture Life of Creep Strength Enhanced Ferritic Steels
The long-term creep strength of creep strength-enhanced ferritic steels has been overestimated due to changes in the stress dependence of creep rupture life at lower stress levels. To address this, creep rupture strength has been reassessed using a region-splitting analysis method, leading to reductions in the allowable tensile stress of these steels as per Japan’s METI Thermal Power Standard Code in December 2005 and July 2007. This method evaluates creep rupture strength separately in high and low stress regimes, divided at 50% of the 0.2% offset yield stress, which corresponds approximately to the 0% offset yield stress in ASME Grade 122-type steels. In the high-stress regime, the minimum creep rate follows the stress dependence of flow stress in tensile tests, with the stress exponent (n) decreasing from 20 at 550°C to 10 at 700°C. In contrast, the low-stress regime exhibits an n value of 4 to 6 for tempered martensitic single-phase steels, while dual-phase steels containing delta ferrite show an even lower n value of 2 to 4. The significant stress dependence of creep rupture life and minimum creep rate in the high-stress regime is attributed to plastic deformation at stresses exceeding the proportional limit. Meanwhile, creep deformation in the low-stress regime is governed by diffusion-controlled mechanisms and dislocation climb as the rate-controlling process.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 690-698, February 25–28, 2025,
...) offers a solid-state deformation processing route to metal additive manufacturing, in which the feed material undergoes severe plastic deformation at elevated temperatures. Some of the key advantages of this process are fabrication of fully dense material with fine, equiaxed grain structures. This work...
Abstract
View Papertitled, Friction Stir Layer Deposition of a High Entropy Alloy for Nuclear Applications
View
PDF
for content titled, Friction Stir Layer Deposition of a High Entropy Alloy for Nuclear Applications
Friction Stir Layer Deposition on a Cu-containing high-entropy alloy (HEA) has been performed for its suitability of the core component of nuclear materials. Excellent irradiation resistance in this Cu-containing HEA has been reported previously. Friction stir layer deposition (FSLD) offers a solid-state deformation processing route to metal additive manufacturing, in which the feed material undergoes severe plastic deformation at elevated temperatures. Some of the key advantages of this process are fabrication of fully dense material with fine, equiaxed grain structures. This work reports the detailed microstructure of the FSLD product, and it discusses the grain refinement and micro-hardness variation observed in FSLD product.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 974-982, October 11–14, 2016,
... showed that the area where constitutional liquation occurred would act as crack initiation site, and the tested specimen fractured without any obvious plastic deformation. This work provided some guidance for the practical production of welded turbine rotors made of FB2 steel. constitutional...
Abstract
View Papertitled, The Evolutionary Behavior of Laves Phase in Virgin FB2 Steel During Welding and Its Effect on Weld Joints
View
PDF
for content titled, The Evolutionary Behavior of Laves Phase in Virgin FB2 Steel During Welding and Its Effect on Weld Joints
In 9~12% Cr containing martensitic stainless steels, Laves phase usually occurs after long term high temperature exposure, while in the present work, some sparse relatively large particles of (Fe,Cr)2Mo type Laves phase were observed in virgin FB2 steel. It is speculated that the large Laves phase particles formed in casting process due to dendritic segregation. Then the evolutionary behavior of Laves phase during welding thermal cycle was studied and constitutional liquation of Laves phase was found, suggesting a liquation crack tendency in FB2 steel. At last, the hot ductility tests showed that the area where constitutional liquation occurred would act as crack initiation site, and the tested specimen fractured without any obvious plastic deformation. This work provided some guidance for the practical production of welded turbine rotors made of FB2 steel.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
..., and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high...
Abstract
View Papertitled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 962-971, August 31–September 3, 2010,
... Abstract HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material...
Abstract
View Papertitled, Creep Rupture Properties of HR6W for Advanced-USC Boilers
View
PDF
for content titled, Creep Rupture Properties of HR6W for Advanced-USC Boilers
HR6W (23Cr-44Ni-7W) is a candidate material for application in the maximum temperature locations of A-USC boilers. In this study the creep rupture properties of plastic deformed, notched, and weldment materials were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for A-USC plant application. The deterioration of long term creep rupture strength has been reported with respect to metastable authentic stainless steel due to cold working. However the creep strength of the 20% pre-strained HR6W increased. HR6W creep strength showed notch strengthening behavior. The creep ruptured strength of the GTAW joints was nearly the same as that of the solution treated material, and all specimens fractured within the base metal. The creep ductility of the solution treated materials decreased under low stress conditions. The intergranular fracture is considered to be caused of ductility drop. This tendency is the same as for austenitic stainless steel. The potential of HR6W as a material for A-USC was revealed from the standpoint of creep rupture properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 416-425, October 21–24, 2019,
... plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix...
Abstract
View Papertitled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
View
PDF
for content titled, Creep Rupture Properties of Dissimilar Welded Joint between Inconel 617B and COST E Martensitic Steel
In this study, creep rupture behaviors and rupture mechanisms of dissimilar welded joint between Inconel 617B and COST E martensitic steel were investigated. Creep tests were conducted at 600 ℃ in the stress range 140-240 MPa. Scanning electron microscopy (SEM) and micro-hardness were used to examine the creep rupture behaviors and microstructure characteristics of the joint. The results indicated that the rupture positions of crept joints shifted as stress changed. At higher stress level, the rupture position was located in the base metal (BM) of COST E martensitic steel with much plastic deformation and necking. At relatively lower stress level, the rupture positions were located in the fine-grained heat affected zone (FGHAZ) of COST E or at the interface between COST E and WM both identified to be brittle fracture. Rupture in the FGHAZ was caused by type Ⅳ crack due to matrix softening and lack of sufficient precipitates pinning at the grain boundaries (GBs). Rupture at the interface was related to oxide notch forming at the interface.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature. deformation galling wear hardfacing hardness microstructure phase transformations plastic strain stainless steel Stellite Advances in Materials...
Abstract
View Papertitled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
View
PDF
for content titled, Tribolayer Formation by Strain-Induced Transformations in Hardfacing Alloys
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 99-110, February 25–28, 2025,
... to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms. austenitic stainless steel deformation behavior elasto-viscoplastic fast Fourier transform plasticity polycrystalline...
Abstract
View Papertitled, Experimental and Numerical Characterization of High Temperature <span class="search-highlight">Deformation</span> Behavior of 347H Stainless Steel
View
PDF
for content titled, Experimental and Numerical Characterization of High Temperature <span class="search-highlight">Deformation</span> Behavior of 347H Stainless Steel
This study investigates how temperature affects the plasticity and thermal creep behavior of 347H stainless steel under uniaxial tension. The research combined experimental testing with advanced computational modeling. Two types of experiments were conducted: uniaxial tensile tests at temperatures from 100°C to 750°C using strain rates of ~10⁻⁴ s⁻¹, and creep tests at temperatures between 600°C and 750°C under various stress levels. These experimental results were used to develop and validate a new integrated mechanistic model that can predict material behavior under any loading condition while accounting for both stress and temperature effects. The model was implemented using a polycrystalline microstructure simulation framework based on elasto-viscoplastic Fast Fourier Transform (EVPFFT). It incorporates three key deformation mechanisms: thermally activated dislocation glide, dislocation climb, and vacancy diffusional creep. The model accounts for internal stress distribution within single crystals and considers how precipitates and solute atoms (both interstitial and substitutional) affect dislocation movement. After validation against experimental data, the model was used to generate Ashby-Weertman deformation mechanism maps for 347H steel, providing new insights into how microstructure influences the activation of different creep mechanisms.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 185-197, August 31–September 3, 2010,
... the strain can be introduced deep because their work hardening can easily occur against the imposed stress. Surface areas where the hardness was hard were observed by TEM and are shown in Figs. 2(a) & 3(a). The whole of observed areas i.e. 10 m depths from the surface had a plastic deformed structure...
Abstract
View Papertitled, Effect of Grain Size on Steam Oxidation for Shot-Peened Stainless Steels
View
PDF
for content titled, Effect of Grain Size on Steam Oxidation for Shot-Peened Stainless Steels
The growth behavior of oxide scale in a laboratory steam environment has been conducted for the shot-peened 18Cr-8Ni stainless steels differing in grain size. Both steels (fine grained and coarse grained) have demonstrated almost the same steam oxidation behavior reacted at 700°C for up to 2000h, which had excellent oxidation resistance due to formation of a protective Cr 2 O 3 scale. After the exposure of 4000h, however, nodule-like oxide occurred on the coarse grained steel, while the fine grained steel still remained the uniform Cr 2 O 3 scale. These behaviors well explained in terms of changes of the outward Cr flux due to recovery and recrystallization of the deformed structure. This result has proven that the shot-peened tube composed of fine grain structure is capable of combat against the steam oxidation at high temperatures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, February 25–28, 2025,
...) and the filler metal. If the strength of the filler metal does not match that of the base metal, then inelastic deformation such as plastic or creep deformation will cause stress redistribution between the stronger and weaker constituents. Due to deformation constraint (strain compatibility) the stronger...
Abstract
View Papertitled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
View
PDF
for content titled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 732-751, August 31–September 3, 2010,
... change during creep exposure, however, causes degradation of mechanical property. Progress of microstructural evolution is influenced by stress and, therefore, that is obviously different in the high- and low-stress regimes divided by a macroscopic elastic limit where successive plastic deformation...
Abstract
View Papertitled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
View
PDF
for content titled, Long-Term Creep Strength Property of Advanced Ferritic Creep Resistant Steels
Long-term creep strength property of creep strength enhanced ferritic steels was investigated. Stress dependence of minimum creep rate was divided into two regimes with a boundary condition of macroscopic elastic limit which corresponds to 50% of 0.2% offset yield stress (Half Yield). High rupture ductility was observed in the high stress regime above Half Yield, and it was considered to be caused by relatively easy creep deformation throughout grain interior with the assistance of external stress. Grades T23, T/P92 and T/P122 steels represented marked drop in rupture ductility at half yield with decrease in stress. It was considered to be caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, because creep deformation was concentrated in a tiny recovered area. High creep rupture ductility of Grade P23 steel should be associated with its lower creep strength. It was supposed that recovery of tempered martensitic microstructure of T91 steel was faster than those of the other steels and as a result of that it indicated significant drop in long-term creep rupture strength and relatively high creep rupture ductility. The long-term creep rupture strength at 600°C of Grade 91 steel decreased with increase in nickel content and nickel was considered to be one of the detrimental factors reducing microstructural stability and long-term creep strength. The causes affecting recovery of microstructure should be elucidated in order to obtain a good combination of creep strength and rupture ductility for long-term.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 470-478, October 21–24, 2019,
...]. However, high temperature strength of conventional turbine disk alloys 470 manufactured by casting and wrought (CW) process has reached near the limit because these alloys require good deformability during billet forging and following plastic deformation process. Recently, powder metallurgy (P/M) process...
Abstract
View Papertitled, Effect of Prior Particle Boundary on <span class="search-highlight">Deformability</span> of Powder Processed Turbine Disk Alloy
View
PDF
for content titled, Effect of Prior Particle Boundary on <span class="search-highlight">Deformability</span> of Powder Processed Turbine Disk Alloy
The powder metallurgy (P/M) process has been applied to a high strength turbine disk alloy. It is known that P/M alloys show characteristic microstructures such as prior powder boundaries (PPB) compared to microstructures of conventional cast and wrought (CW) alloys. High temperature tensile tests were conducted on CW and P/M processed alloy720Li in order to reveal the effect of temperature and strain rate on deformation behavior and to demonstrate the effect of microstructure derived from P/M process on deformability. The fracture mode of the P/M material changed from grain interior fracture to fracture around large PPB with an increment of strain rate. In addition, samples ruptured at higher temperature showed grain boundary fracture regardless of strain rate. On the other hand, the CW material showed good deformability with chisel point fracture in the entire temperature and strain rate condition range. In the P/M material, melting of grain boundaries occurred at super solvus temperature conditions. Large PPB acts as nucleation site of voids at higher strain rate conditions. Precipitation strengthening by γ’ phase degrades deformability at sub solvus temperature conditions. However, deformability near the solvus temperature and low strain rate condition in as HIPed P/M material increased with fine grain size distribution in spite of the presence of large grains resulting from PPB.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
... and looping mechanism behavior. During plastic deformation, when dislocations motion is stimulated, dislocations which are unable to cut through precipitates bow around these precipitates and eventually form loops around them. This has for effect to reduce the interparticle spacing as plastic deformation...
Abstract
View Papertitled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
View
PDF
for content titled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and High-Temperature Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... solution with nitrogen) there were no cracks even under aggravated conditions in terms of mechanical load (plastic deformation). The comparison of fracture surfaces from cracks in the laboratory to cracks observed from the field show clearly an intergranular cracking in both cases. Environment O2 free N2...
Abstract
View Papertitled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
View
PDF
for content titled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 304-314, October 21–24, 2019,
... is 100% Ferrite. The latter condition is of interest because of its widespread occurrence on operating power plant with grade 91 pipework systems. BACKGROUND AND MOTIVATION Manufacture and Service-Induced Plastic Deformation Material subject to pre-straining may incur a change in high temperature...
Abstract
View Papertitled, Pre-Straining Effect on the Creep Behavior of Impression Creep Tests for a P91 Steel at 600 °C
View
PDF
for content titled, Pre-Straining Effect on the Creep Behavior of Impression Creep Tests for a P91 Steel at 600 °C
This paper investigates the effect of high temperature tensile strain on subsequent creep strength in grade 91 steel. Failed hot tensile specimens have been sectioned at various positions along the specimen axis, and therefore at different levels of hot tensile strain, to obtain material for creep strength evaluation. Because of the limited amount of material available for creep testing obtained in this way, creep testing has been carried out using the specialised small-scale impression creep testing technique. The grade 91 material has been tested in both the normal martensitic condition and in an aberrant mis-heat treated condition in which the microstructure is 100% Ferrite. The latter condition is of interest because of its widespread occurrence on operating power plant with grade 91 pipework systems.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1380-1388, October 21–24, 2019,
... strain, and (b) engineering stress versus plastic strain. 1382 42?+3CE:32F:;2C?+2?+GHI0+3:A<33A2E=CE Figure 3 shows a backscattered electron image of the NL sample before deformation and a strain map in the corresponding region after fracture obtained by DIC technique. The stress axis is horizontal...
Abstract
View Papertitled, <span class="search-highlight">Deformation</span> Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
View
PDF
for content titled, <span class="search-highlight">Deformation</span> Behavior of Advanced γ-TiAl Based Alloys by In-Situ SEM Observation and Digital Image Correlation Technique
Tensile deformation behavior of γ-TiAl based alloys consisting of α 2 -Ti 3 Al/γ lamellar colonies, β-Ti grains, and γ grains were investigated by in-situ scanning electron microscopy and digital image correlation technique, in order to identify the role of each microstructure constituents in deformation. The alloy with nearly lamellar microstructure, in which the volume fraction of β/γ duplex ( V DP ) is 10%, shows elongation of only 0.14%, whereas the alloy with nearly globular β/γ duplex microstructure with V DP of 94% shows elongation of 0.49%. In α 2 /γ lamellar microstructure, obvious strain localization occurs along lamellae and develops at specific regions with loading. In the case of β/γ duplex microstructure, strain localization is observed in γ grains and in β phase regions near the β/γ phase boundary, although no obvious deformation is observed in the β grains. β/γ phase boundaries enhances room temperature ductility of TiAl alloys by inducing multiple slip in γ phase and deformation of β phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 795-802, October 21–24, 2019,
.... The signals obtained by the displacement measurement system were fed back into the control system through the dynamic testing control and acquisition software, and hence true-stress constant creep tests were achieved assuming a constant volume during plastic deformation in this work. Details on the creep...
Abstract
View Papertitled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
View
PDF
for content titled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates are largely rotated and Moss works as sticky ligament in the small-plate-reinforced metal-matrix composites. This may be the reason why the MoSiBTiC alloy exhibits large creep elongation and excellent creep resistance. In other words, the evolution of microstructures infers that the consummation of Mo 5 SiB 2 plate rotation may lead to the initiation of creep rapture process. Therefore, the unique microstructure formed during solidification provides the feature of good mechanical properties for the 1st generation MoSiBTiC alloy.
1