Skip Nav Destination
Close Modal
Search Results for
pipe applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 248 Search Results for
pipe applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 615-626, October 22–25, 2013,
...,-2U0S1A3p0615 D. Gandy, J. Shingledecker, editors THE EFFECT OF POST WELD HEAT TREATMENT ON THE CREEP BEHAVIOUR AND MICROSTRUCTURAL EVOLUTION IN GRADE 92 STEEL WELDS FOR STEAM PIPE APPLICATIONS X. Xu, G.D. West, and R.C. Thomson Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK J...
Abstract
View Paper
PDF
Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used to achieve sufficient toughness in the weld. To relieve the internal stress in the welds and to stabilise their microstructures, a post weld heat treatment (PWHT) is commonly applied. The heat treatment conditions used for the PWHT have a significant effect on both the resulting microstructure and the creep behaviour of the welds. In this study, interrupted creep tests were carried out on two identical Grade 92 welds that had been given PWHTs at two different temperatures: 732°C and 760°C. It was found that the weld with the lower PWHT temperature had a significantly reduced stain rate during the creep test. In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT temperatures on the microstructure, initially the microstructures in the head portions of the two creep test bars were compared. This comparison was performed quantitatively using a range of electron/ion microscopy based techniques. It was apparent that in the sample subjected to the higher PWHT temperature, larger Laves phase particles occurred and increased matrix recovery was observed compared with the sample subjected to the lower PWHT temperature.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 161-168, October 11–14, 2016,
.... Shingledecker, J. Siefert, editors APPLICATION OF INCONEL® 740H® TO PIPE TRANSITION JOINTS IN ADVANCED POWER PLANT P. Moody, P. Barnard, T. Dauda Doosan Babcock Ltd., Porterfield Road, Renfrew, UK, PA4 8DJ B.A. Baker, R.D. Gollihue Special Metals, a PCC Company, 3200 Riverside Drive, Huntington, WV 2570...
Abstract
View Paper
PDF
INCONEL 740H has been developed by Special Metals for use in Advanced Ultra Super Critical (A-USC) coal fired boilers. Its creep strength performance is currently amongst the ‘best in class’ of nickel based alloys, to meet the challenge of operating in typical A-USC steam temperatures of 700°C at 35 MPa pressure. Whilst the prime physical property of interest for INCONEL 740H has been creep strength, it exhibits other physical properties worthy of consideration in other applications. It has a thermal expansion co-efficient that lies between typical values for Creep Strength Enhanced Ferritic (CSEF) steels and austenitic stainless steels. This paper describes the validation work in support of the fabrication of a pipe transition joint that uses INCONEL 740H pipe, produced in accordance with ASME Boiler Code Case 2702, as a transition material to join P92 pipe to a 316H stainless steel header. The paper gives details of the material selection process, joint design and the verification process used for the joint.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 788-802, October 25–28, 2004,
... of plants. These applications including the Welding Procedure Qualifications are described. boiler tubes chemical composition creep test cross weld specimens melting loss nickel-chromium-cobalt-molybdenum alloys piping tensile test weld performance welding welding consumables welding...
Abstract
View Paper
PDF
Investigations on welded joints made from a modified parent material and welding consumables are described. Tubes and pipes with typical dimensions have been welded using different welding processes and consumables (GTAW, SAW, SMAW, modified filler metals). The influence of melting loss and chemical composition of the consumables on the weld performance was studied. Short-term tensile and long-term creep tests on cross weld specimens were carried out in order to evaluate strength. The results obtained so far show that the properties of the welded joints are rather optimistic, it could be assumed that the modified Alloy 617 and the welding consumables used will meet the requirements for use in a plant operated at ultra critical steam conditions with live steam temperatures up to 720°C and pressure up to 300 bar. This allows for first practical applications in test loops of plants. These applications including the Welding Procedure Qualifications are described.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1232-1243, October 22–25, 2013,
.../10.31399/asm.cp.am-epri-2013p1232 Copyright © 2014 Electric Power Research Institute, Inc. Distributed by ASM International®. All rights reserved. D. Gandy, J. Shingledecker, editors APPLICATION OF NEW GMAW WELDING METHODS USED IN PREFABRICATION OF P92 (X10CRWMOVNB9-2) PIPE BUTT WELDS Michael URZYNICOK...
Abstract
View Paper
PDF
Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using GTAW process combined with MMA processes. Progress in GMAW process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding procedure. The investigation also involved microscopic and fractographic examinations and creep tests. The results reveal that welding with GMAW is by no means inferior to a currently applied SMAW method yet the time of the process is shorter by 50%. The article presents the world’s first known positive results in welding of P92 grade steel using GMAW welding method.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, October 15–18, 2024,
.... ceramic matrix composites creep resistance fiber-jacketed composite pipes high-temperature applications hollow cylinder specimens thermal power plants wall thickness Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15...
Abstract
View Paper
PDF
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 72-85, August 31–September 3, 2010,
... embrittlement during long term creep exposure. A new Ni based alloy, HR35 strengthened by a-Cr phase and other intermetallic phases has been proposed for piping application, which is specially designed for a good resistance to relaxation cracking as well as high strength and a good resistance to steam oxidation...
Abstract
View Paper
PDF
Recent advances in materials technology for boilers materials in the advanced USC (A-USC) power plants have been reviewed based on the experiences from the strengthening and degradation of long term creep properties and the relevant microstructural evolution in the advanced high Cr ferritic steels. P122 and P92 type steels are considered to exhibit the long term creep strength degradation over 600°C, which is mainly due to the instability of the martensitic microstructure strengthened too much by MX carbonitrides. This can be modified by reducing the precipitation of VN nitride and by optimizing the Cr content of the steels. An Fe-Ni based alloy, HR6W strengthened by the Fe2W type Laves phase is found to be a marginal strength level material with good ductility at high temperatures over 700°C and to be used for a large diameter heavy wall thick piping such as main steam pipe and hot reheat pipe in A-USC plants, while Ni-Co based alloys such as Alloys 617 and 263 strengthened by a large amount of the y’ phase are found to be the high strength candidate materials for superheater and reheater tubes, although they are prone to relaxation cracking after welding and to grain boundary embrittlement during long term creep exposure. A new Ni based alloy, HR35 strengthened by a-Cr phase and other intermetallic phases has been proposed for piping application, which is specially designed for a good resistance to relaxation cracking as well as high strength and a good resistance to steam oxidation and fire-side corrosion at high temperatures over 700°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 265-275, October 22–25, 2013,
... Abstract Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H...
Abstract
View Paper
PDF
Inconel alloy 740H is designated for boiler sueprheater/reheater tubes and main steam/header pipes application of advanced ultra-supercritical (A-USC) power plant at operating temperatures above 750°C. Microstructure evolution and precipitates stability in the samples of alloy 740H after creep-rupture test at 750°C, 800°C and 850°C were characterized in this paper by scanning electron microscopy, transmission electron microscopy and chemical phase analysis in details. The phase compositions of alloy 740H were also calculated by thermodynamic calculation. The research results indicate that the microstructure of this alloy keeps good thermal stability during creep-rupture test at 750°C, 800°C and 850°C. The precipitates are MC, M 23 C 6 and γ′ during creep-rupture test. The temperature of creep test has an important effect on the growth rate of γ′ phase. No harmful and brittle σ phase was found and also no γ′ to η transformation happened during creep. Thermodynamic calculations reveal almost all the major phases and their stable temperatures, fractions and compositions in the alloy. The calculated results of phase compositions are consistent with the results of chemical phase analysis. In brief, except of coarsening of γ′, Inconel alloy 740H maintains the very good structure stability at temperatures between 750°C and 850°C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 612-622, October 15–18, 2024,
... Abstract Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite...
Abstract
View Paper
PDF
Grade 91 creep strength-enhanced ferritic steel is a critical material in power generation, widely used for high-temperature, high-pressure tubing and piping applications. Its superior elevated-temperature strength derives from a distinctive microstructure of tempered martensite with uniformly dispersed secondary phases (carbides and carbo-nitrides). This microstructure, crucial for reliable service performance, is achieved through precise control of the manufacturing process, including steelmaking, hot forming, and final heat treatment. This investigation builds upon earlier research into the relationship between manufacturing parameters and short-term creep-rupture properties in T91 tubes, and a recent update that included test results exceeding 30,000 hours. This study presents a comprehensive metallurgical analysis of ruptured test specimens. The investigation focuses on correlating manufacturing parameters with not only creep strength but also material ductility and microstructural evolution during long-term exposure, providing valuable insights into the material’s behavior under extended service conditions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, October 15–18, 2024,
... geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed. austenitic stainless steel chromium-molybdenum steel creep...
Abstract
View Paper
PDF
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 916-932, August 31–September 3, 2010,
...-forged it at 5:1 and 12:1 reductions, to assess feasibility of the alloy as a wrought advanced stainless steel for potential use as steam headers and piping for A-USC power plant applications. The hot-forged alloy has a recrystallized grain structure 6-9 times finer than the as-cast dendritic structure...
Abstract
View Paper
PDF
Advanced Ultra-supercritical (A-USC) steam power-plant technology is being developed for better efficiency and lower emissions at 700°C and above, but is based mainly on Ni-based alloys. The ability to include lower-cost alloys with appropriate high-temperature performance should have substantial technological and economic benefits. CF8C-Plus is a cast austenitic stainless steel recently developed for other applications at 600-900°C, which has creep-strength comparable to many solid-solution Ni-based alloys. EPRI and Carpenter Technology produced a 400 lb heat of CF8C-Plus steel and hot-forged it at 5:1 and 12:1 reductions, to assess feasibility of the alloy as a wrought advanced stainless steel for potential use as steam headers and piping for A-USC power plant applications. The hot-forged alloy has a recrystallized grain structure 6-9 times finer than the as-cast dendritic structure, resulting in better strength and impact resistance at room-temperature, and about 20% higher yield-strength (YS) at 760°C, and similar or better ductility compared to the as-cast material. The initial creep-rupture testing at 700-800°C for up to 2000h also indicates similar or better rupture resistance and better creep-ductility for wrought compared to cast material. The next steps needed to test performance of the wrought austenitic stainless steel for extruded headers and piping are discussed.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1010-1017, October 11–14, 2016,
..., which is an impressive candidate material to make tubes, pipes and forgings of advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600 to 650 . The successful development of G115 extends the upper application temperature limitation of martensitic steel...
Abstract
View Paper
PDF
G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C. The successful development of G115 extends the upper application temperature limitation of martensitic steel from 600°C to about 650°C. This breakthrough is imperative for the design and construction of 610°C to 650°C A-USC fossil fired power plants, from the viewpoint of the material availability and economics of coal fired power plant designs. This paper introduces the development history and progress of G115 steel. The strengthening mechanism of the novel martensitic steel is briefly discussed, and the optimized chemical composition and mechanical properties of G115 steel are described. The details of industrial trials of G115 tube and pipe at BaoSteel in the past years are reviewed, with the emphasis on the microstructure evolution during aging and creep testing. These tests clearly show that the microstructure of G115 steel is very stable up to the temperature of 650°C. Correspondingly, the comprehensive mechanical properties of G115 steel are very good. The creep rupture time is longer than 17000 hours at the stress of 120MPa and at the temperature of 650°C and 25000+ hours at the stress of 100MPa and at the temperature of 650°C, which is about 1.5 times higher than that of P92 steel. At the same time, the oxidation resistance of G115 steel is a little bit better than that of P92 steel. If G115 steel is selected to replace P92 pipes at the temperature scope from 600°C to 650°C, the total weight of the pipe can be reduced by more than 50% and the wall thickness of the pipe can be reduced up to about 55%. In addition, the upper application temperature limitation of G115 steel is about 30°C higher than that of P92 steel. Thus, G115 steel is a strong candidate material for the manufacturing of 600+°C advanced ultra-super-critical (A-USC) fossil fuel power plants in China and elsewhere.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1059-1070, October 22–25, 2013,
... inch OD x 0.5 inch wall thickness and 6 inch OD x 0.75 inch wall (13.3 x 1.3 cm and 15.2 x 1.9 cm), each about 1000 lbs, to continue to assess the feasibility of using a wrought version of the alloy in power piping and tubing applications. The mechanical properties from these extrusions show...
Abstract
View Paper
PDF
Ultrasupercritical (USC) steam boiler and heat recovery steam generator (HRSG) technology is constantly evolving to improve efficiency and reduce emissions. Currently, temperatures are pushing beyond the capabilities of even the most advanced ferritic steels with some applications requiring nickel-based superalloys. Cost-effective design of these systems requires the application of a variety of alloys representing a range of cost/property trade-offs. CF8C-Plus is a cast austenitic stainless steel recently developed for application in high temperatures similar to those in power plants (600 - 900 °C) with creep strength comparable to several superalloys. This makes it an attractive alternative for those expensive alloys. EPRI, with assistance from PCC subsidiaries Special Metals and Wyman Gordon Pipes and Fittings, has produced and characterized two pipe extrusions nominally 5.25 inch OD x 0.5 inch wall thickness and 6 inch OD x 0.75 inch wall (13.3 x 1.3 cm and 15.2 x 1.9 cm), each about 1000 lbs, to continue to assess the feasibility of using a wrought version of the alloy in power piping and tubing applications. The mechanical properties from these extrusions show performance in the same population as earlier forging trials demonstrating capability exceeding several austenitic stainless steels common to the industry. Creep-rupture performance in these extrusions continues to be competitive with nickel-based superalloys.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1030-1044, August 31–September 3, 2010,
... for very thick section welds that can be rotated or manipulated into the flat position. Orbital GTAW, however, with reduced volume groove geometries is gaining favor for heavy walled insitu piping applications. 1033 For a large diameter thick wall fixed pipe joint, reductions in joint completion rate of 25...
Abstract
View Paper
PDF
The use of flux-cored arc welding (FCAW) is rapidly gaining acceptance in a variety of industries. Much of the gains are due to advances in manufacturing technology that result in superior wires that satisfy both technical and operability concerns. Additionally, productivity gains and the ability to use unsophisticated welding equipment have made these wires very popular. This paper concentrates on FCAW wires that have been formulated to address chromium-molybdenum, nickel base, and stainless steels for high-temperature and environmental applications. Mechanical properties, including creep rupture strength and ductility data, as well as corrosion in environmental components, are discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1397-1406, October 22–25, 2013,
... and characterize mechanical damage caused by SCC, allowing the detection of the incipient stages of damage to components/piping. The application of this study is to prevent failures in the primary cooling loop piping in nuclear plants. The main benefit to the industry will be improved safety and component lifetime...
Abstract
View Paper
PDF
Current nondestructive examination (NDE) technology detection capabilities limit our ability to detect stress corrosion cracking (SCC) damage until it has progressed significantly. This work describes the continued development of an in-situ monitoring technique to detect and characterize mechanical damage caused by SCC, allowing the detection of the incipient stages of damage to components/piping. The application of this study is to prevent failures in the primary cooling loop piping in nuclear plants. The main benefit to the industry will be improved safety and component lifetime assessment with fewer inspections. The technique utilizes high resolution fiber optic strain gages mounted on the pipe outside diameter (OD). This technique has successfully detected changes in the residual stress profile caused by a crack propagating from the pipe inside diameter (ID). The gages have a resolution of < 1 με. It has been shown experimentally for different crack geometries that the gages can readily detect the changes of approximately 10-60 με caused on the OD of the pipe due to crack initiation on the ID. This paper focuses on the latest in the development of the technology. Details of the previous work in this effort may be found in References 1 through 3. A short summary is provided in this paper. The main recent development was the full scale accelerated SCC cracking in boiling magnesium chloride (MgCl 2 ) experiment. In conjunction with experimentation, both 2D and 3D finite element (FEA) models with thermal and mechanical analyses have been developed to simulate the changes in residual stresses in a welded pipe section as a SCC crack progresses.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 336-346, October 11–14, 2016,
... Abstract The mechanisms of recent cracking failures of HR3C super heater pipes of a fossil power plant in the Netherlands were investigated. Initial failure investigations showed that pitting corrosion of the sensitized HR3C initiated subsequent stress corrosion cracking (SCC). It was concluded...
Abstract
View Paper
PDF
The mechanisms of recent cracking failures of HR3C super heater pipes of a fossil power plant in the Netherlands were investigated. Initial failure investigations showed that pitting corrosion of the sensitized HR3C initiated subsequent stress corrosion cracking (SCC). It was concluded that magnesium chloride hydrates from condensed seawater had initiated pitting corrosion as well as SCC similar to the standard ASTM G36 SCC test. By experimental application of the ASTM G36 procedure, this tentative mechanism is reproduced and confirmed by a series of laboratory tests with pure magnesium chloride as well as with synthetic seawater. It included the effects of temperature, magnesium chloride concentrations of the evaporating water and applied bending moments on cracking. As a result for the 175h testing period in MgCl2*6H 2 O cracking increases significantly above 100°C up to 120°C but is reduced slightly at temperatures up to 155°C. With increasing bending moments, the U-shaped test pieces revealed increasing crack depths up to total fracture of the 5mm thick sections. Lower magnesium chloride concentrations as in concentrated seawater provided identical cracking, however, to a lower extent. It is therefore concluded that the operational failure of the sensitized HR3C super heater pipes was initiated in presence of condensed seawater and followed the same mechanism as found in the experimental investigation. As a conclusion, the presence of seawater saturated air at temperatures between 100° and 155°C should be avoided.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 530-553, August 31–September 3, 2010,
... Abstract The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum...
Abstract
View Paper
PDF
The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum damage mechanics (CDM) analysis techniques which have been developed over the last 20 years. The complexity of the CDM methods and their data requirements has been a barrier to their more widespread use. The need for simplified methods has been driven by the need for risk assessment of in-service high temperature welded piping and headers around the world, the need to connect cross-weld data to weld joint design and assessment, and in general, the need to develop suitable guidelines for evaluating the strength of weldments relative to that of base metal.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 123-134, October 15–18, 2024,
... Boilers and B31.1 Power Piping code cases for cast CF8C-Plus [6, 7]. The successful development of cast CF8C-Plus led to an early feasibility assessment to determine if a wrought version of the alloy could be used in high temperature power piping applications [8, 9]. Those studies demonstrated...
Abstract
View Paper
PDF
The mechanical behavior of a cast form of an advanced austenitic stainless steel, CF8C-Plus, is compared with that of its wrought equivalent in terms of both tensile and creep-rupture properties and estimated allowable stress values for pressurized service at temperatures up to about 850°C. A traditional Larson-Miller parametric model is used to analyze the creep-rupture data and to predict long-term lifetimes for comparison of the two alloy types. The cast CF8C-Plus exhibited lower yield and tensile strengths, but higher creep strength compared to its wrought counterpart. Two welding methods, shielded-metal-arc welding (SMAW) and gas-metal-arc welding, met the weld qualification acceptance criteria in ASME BPVC Section IX for the cast CF8C-Plus. However, for the wrought CF8C-Plus, while SMAW and gas-tungsten-arc welding passed the tensile acceptance criteria, they failed the side bend tests due to lack of fusion or weld metal discontinuities.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1067-1076, August 31–September 3, 2010,
... steam conditions, the application of Ni based or Fe-Ni based alloys becomes essential, the most critical issues to be settled are the development of materials for boiler tube and thick-wall pipe as well as the establishment of the corresponding fabrication procedures. Since no experience is available...
Abstract
View Paper
PDF
Continuous and active works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants in Europe, United States and also Japanese national project has launched in 2008. In this new Japanese project Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is one of the candidate materials for boiler tube and pipe as well as Ni based alloys such as well-known Alloy617, Alloy263 and Alloy740. The most important issue in boiler fabrication is the welding process of these alloys and long-term reliability of their weldments. Authors investigated the weldability of HR6W thick-wall pipe. The integrity of the weldment was confirmed with metallurgical investigation, mechanical testing and long term creep rupture test. It is proved that the narrow gap HST welding procedure can meet the requirements for Ni based or Fe-Ni based alloys and provides excellent strength properties.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... on cyclic behavior of these materials have been enhanced recently. For tubes, piping and headers in the boiler of A-USC-plants the Nickel alloys 617, 263 and 740 are under investigation. For these materials which are partly known from other application (e.g. for gas turbines) first problems of manufacturing...
Abstract
View Paper
PDF
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... microstructure stability is considered to be the main metallurgical factor behind the alloy s good creep strength stability. APPLICATION OF NARROW GAP HST WELDING PROCEDURE TO OTHER NI BASED PIPES In Japanese national project, besides of HR6W, welding tests of Ni based thick wall pipes (OD of 350mm, WT of 40mm...
Abstract
View Paper
PDF
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
1