Skip Nav Destination
Close Modal
Search Results for
phase transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 118 Search Results for
phase transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... Abstract The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat...
Abstract
View Paper
PDF
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 821-829, October 21–24, 2019,
... Abstract High-temperature shape memory alloys (HTSMAs) are expected to be utilized for actuators in high temperature environments such as thermal power plants and jet engines. NIMS has designed TiPd shape memory alloys because high martensitic phase transformation temperature of TiPd around 570...
Abstract
View Paper
PDF
High-temperature shape memory alloys (HTSMAs) are expected to be utilized for actuators in high temperature environments such as thermal power plants and jet engines. NIMS has designed TiPd shape memory alloys because high martensitic phase transformation temperature of TiPd around 570 ° C is expected to be high-temperature shape memory alloys. However, the strength of the austenite phase of TiPd is low and the perfect recovery was not obtained. Then, strengthening of TiPd by addition of alloying elements has been attempted, but the complete recovery was not obtained. Therefore, high entropy alloys (HEA, multi-component equiatomic or near equiatomic alloys) were attempted for HTSMA. The severe lattice distortion and the sluggish diffusion in HEA are expected to contribute strong solid-solution hardening of HTSMA. In this study, multicomponent alloys composed of Ti-Pd-Pt-Ni-Zr were prepared and the phase transformation, shape memory properties, and mechanical properties were investigated.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 513-524, October 22–25, 2013,
... or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering...
Abstract
View Paper
PDF
The use of the bainitic class of creep strength enhanced ferritic steels T/P23 and T24 has increased over the last decade in a wide range of applications including replacement headers, superheater and reheater tubing and in waterwall tubing. Many issues have been reported in one or both of these materials including hydrogen induced cracking, reheat cracking and stress corrosion cracking. To appropriately address these issues, work has been initiated that includes a literature review, development of a database of phase transformation temperatures, investigation of tempering behavior, and an analysis of the effect of phase transformation on residual stresses. Such information will be provided in the context of understanding why these two materials appear highly susceptible to these cracking mechanisms.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 90-95, October 21–24, 2019,
... Abstract The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase...
Abstract
View Paper
PDF
The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase into the α-ferrite phase. One of the problems on the formation of the fine Laves phase dispersion is a poor heat treatability; the interphase precipitation (δ-Fe→γ-Fe+Fe 2 Hf) is competitive with the precipitation of Laves phase from the δ phase in the eutectoid-type reaction pathway (δ→δ+Fe 2 Hf). In the present work, the effect of supersaturation on the precipitation of Laves phase from δ phase (δ→δ+Fe 2 Hf) and the δ→γ transformation in the reaction pathway was investigated by changing the Hf and Cr contents. The results obtained suggest that it is effective to have a high supersaturation for the precipitation of Laves phase and an adequately high supersaturation for the δ→γ transformation at the same time in order to widen the window of the interphase precipitation
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear...
Abstract
View Paper
PDF
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 253-264, October 21–24, 2019,
... with partial dissolution of precipitates; and (3) the over tempered (OT) region, with no phase transformation but precipitate coarsening and decreased hardness. dilatometers electron microscopy hardness heat-affected zone heating rate martensitic stainless steel micro-hardness testing...
Abstract
View Paper
PDF
For VM12-SHC 11-12 wt. % Cr steel, there have been no systematic investigations to define the regions or characterise the microstructures within the heat-affected zone (HAZ) of weldments. In similar steels, these regions relate to the Ac 1 and Ac 3 transformation temperatures and can affect weldment performance. In this study, controlled thermal cycles were applied to VM12-SHC parent metal using a dilatometer and the Ac 1 and Ac 3 temperatures were measured for various heating rates. The Ae 1 and Ae 3 temperatures were also calculated by thermodynamic equilibrium modeling. Through dilatometry, thermal cycles were then applied to simulate the microstructures of the classically defined HAZ regions. The microstructural properties of each simulated material were investigated using advanced electron microscopy techniques and micro-hardness testing. It was found that the simulated HAZ regions could be classified as; (1) the completely transformed (CT) region, with complete dissolution of pre-existing precipitates and complete reaustenitisation; (2) the partially transformed (PT) region, exhibiting co-existing original martensite with nucleating austenite microstructures with partial dissolution of precipitates; and (3) the over tempered (OT) region, with no phase transformation but precipitate coarsening and decreased hardness.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1160-1169, October 11–14, 2016,
...) and intercritical (IC) regions where Type IV cracking is most commonly found to occur. The course grained (CG), FG and IC regions of the HAZ in Grade 91 steel were simulated using a Gleeble 3800 Thermo-Mechanical Simulator. A dilatometer was used to determine the phase transformations occuring during simulation...
Abstract
View Paper
PDF
Grade 91 steel has been found to be susceptible to Type IV cracking in the base metal heat affected zone (HAZ). In order to better understand this type of failure, a study on the metallurgical reactions occuring within the HAZ was conducted, particularly within the fine grained (FG) and intercritical (IC) regions where Type IV cracking is most commonly found to occur. The course grained (CG), FG and IC regions of the HAZ in Grade 91 steel were simulated using a Gleeble 3800 Thermo-Mechanical Simulator. A dilatometer was used to determine the phase transformations occuring during simulation of weld thermal histories. For the first time, it was shown that ferrite can form in the IC HAZ of Grade 91 steel welds. The magnitude of the ferrite transformation was observed to decrease with faster cooling rates. The presence of ferrite in the simulated IC HAZ microstructure was shown to decrease the high temperature tensile strength and increase the high temperature elongation compared to HAZ regions that did not undergo ferrite transformation. Welding parameters such as heat input, preheat and interpass temperature can be selected to ensure faster cooling rates and reduce or potentially avoid formation of ferrite in the IC HAZ.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1469-1475, October 21–24, 2019,
..., knowledge about β o →β phase transformation is desirable. Surprisingly, for the binary Ti-Al system it is under discussion whether the ordered β o phase exists. Also, the effect of alloying elements on the β phase ordering is still unclear. In the present work the ordering of the β phase in binary Ti...
Abstract
View Paper
PDF
Either at higher temperatures or when a certain alloying element content is exceeded, γ-TiAl alloys contain the β phase (bcc) or its ordered derivate β o (B2). The relatively soft β phase can facilitate hot deformation, but β o is detrimental for creep strength and ductility. Thus, knowledge about β o →β phase transformation is desirable. Surprisingly, for the binary Ti-Al system it is under discussion whether the ordered β o phase exists. Also, the effect of alloying elements on the β phase ordering is still unclear. In the present work the ordering of the β phase in binary Ti-(39,42,45)Al and ternary Ti-42Al-2X alloys (X=Fe, Cr, Nb, Ta, Mo) which was experimentally investigated by neutron and high energy X-ray diffraction is compared with the results of first principles calculations using density functional theory. Except for Cr the experimentally determined and the predicted behavior correspond.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... strength creep rupture test creep strength enhanced ferritic steel martensitic stainless steel phase transformations post weld heat treatment quenching dilatometers thermodynamic calculation Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24...
Abstract
View Paper
PDF
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 987-998, October 25–28, 2004,
... austenite structure during the alpha-to-gamma phase transformation. Simulated Ac3 HAZ structures of the boron steel achieved creep life nearly equivalent to the base metal. The suppression of Type IV failure and improved creep resistance in welded joints of the boron steels are likely attributed...
Abstract
View Paper
PDF
This study investigated the creep rupture strength and microstructure evolution in welded joints of high-boron, low-nitrogen 9Cr steels developed by NIMS. The welds were fabricated using the GTAW process and Inconel-type filler metal on steel plates with varying boron content (47-180 ppm). Creep rupture tests were conducted at 923K for up to 10,000 hours. Despite their higher boron content, these steels exhibited good weldability. Welded joints of the boron steel displayed superior creep properties compared to conventional high-chromium ferritic steel welds like P92 and P122. Notably, no Type IV failures were observed during creep testing. Welding introduced a large-grained microstructure in the heat-affected zone (HAZ) heated to the austenite transformation temperature (Ac3 HAZ). This contrasts with the grain refinement observed in the same region of conventional heat-resistant steel welds. Interestingly, the grain size in this large microstructure was nearly identical to that of the base metal. Analysis of the simulated Ac3 HAZ revealed crystal orientation distributions almost identical to those of the original specimen. This suggests a regeneration of the original austenite structure during the alpha-to-gamma phase transformation. Simulated Ac3 HAZ structures of the boron steel achieved creep life nearly equivalent to the base metal. The suppression of Type IV failure and improved creep resistance in welded joints of the boron steels are likely attributed to the large-grained HAZ microstructures and stabilization of M 23 C 6 precipitates. The optimal boron content for achieving the best creep resistance in welded joints appears to lie between 90 and 130 ppm, combined with minimized nitrogen content.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1199-1206, October 11–14, 2016,
... on microstructural formation. It was found that the HAZ in the DMW experienced longer dwell time at high temperatures because of the latent heat of fusion released during Alloy 625 solidification (1350 - 1125 °C). This allowed longer time for carbide dissolution and phase transformations in the DMW than...
Abstract
View Paper
PDF
Unpredictable failures near the phase boundary in Grade 91 dissimilar metal welds (DMW) with nickel based filler metals represent a significant problem for the power generation industry. In order to determine the root cause for these failures, it is necessary to understand the formation of the microstructure in the weld regions around the site of failure. Thermal histories were therefore measured inside the Grade 91 steel heat affected zone (HAZ) of an autogenous weld and of a DMW in the form of bead on plate with Alloy 625 to study the effect of the weld thermal cycle on microstructural formation. It was found that the HAZ in the DMW experienced longer dwell time at high temperatures because of the latent heat of fusion released during Alloy 625 solidification (1350 - 1125 °C). This allowed longer time for carbide dissolution and phase transformations in the DMW than in the autogenous weld. Additionally, the 625 filler metal created a large chemical potential gradient for carbon, which when combined with longer dwell times, yielded carbon depletion in the heat affected zone. Retention of δ ferrite in the coarse grained HAZ (CGHAZ) of DMWs was found to be an indicator for these mechanisms.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 587-601, October 25–28, 2004,
... containing alloy Inconel 706 had a complex microstructure with γ', γ" and η phases which are stable in long term service up to 620 °C. At higher temperatures significant particle coarsening and phase transformation were observed. Waspaloy is hardened by γ' particles and after ageing at 700 °C and higher...
Abstract
View Paper
PDF
Three Ni-base wrought alloys with different hardening mechanisms (INCONEL 706, Waspaloy and INCONEL 617) were investigated as candidates for steam turbine rotor applications at temperatures up to 700 °C in respect to their microstructure and microstructural stability. The Nb containing alloy Inconel 706 had a complex microstructure with γ', γ" and η phases which are stable in long term service up to 620 °C. At higher temperatures significant particle coarsening and phase transformation were observed. Waspaloy is hardened by γ' particles and after ageing at 700 °C and higher, it tended to a stable microstructure. Inconel 617 is a solid solution hardened material additionally hardened by homogeneously distributed fine M 23 C 6 carbides. After long term ageing at temperatures of 650 °C to 750 °C the carbides tended to form carbide films along the grain boundaries and at 700 °C to 750 °C γ' precipitated as homogeneously distributed particles with low coarsening during long term service. In order to optimize the candidate alloys Inconel 706 and Waspaloy were modified to the new alloys DT 706 and DT 750. The aspects of modification and first experimental results are reported.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 982-991, October 22–25, 2013,
... the microstructure, determination of phase transformation points, scanning electron microscopy, and X-ray diffraction. The results revealed that the addition of RE elements has the potential to enhance the properties and modify the microstructure of SA335P91 welds. ferritic stainless steel impact test...
Abstract
View Paper
PDF
This study investigates the impact of adding small amounts of rare earth (RE) elements on the properties and microstructures of SA335P91 steel welds. The RE elements were incorporated into the weld metal using a coating process. The researchers then proposed an optimal RE formula aimed at achieving improved properties and microstructures. To evaluate the effectiveness of this approach, various tests were conducted on both welds with and without RE additions. These tests included tensile testing (both at room and high temperatures), impact testing, metallographic analysis to examine the microstructure, determination of phase transformation points, scanning electron microscopy, and X-ray diffraction. The results revealed that the addition of RE elements has the potential to enhance the properties and modify the microstructure of SA335P91 welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
... a major role. austenitic heat resistant steel boiler tubes chemical composition dislocations grain boundaries high temperature services magnetic behavior martensite martensite transformation microstructure phase structure stacking faults Advances in Materials Technology for Fossil...
Abstract
View Paper
PDF
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
... the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases...
Abstract
View Paper
PDF
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1058-1066, October 11–14, 2016,
... steels with such a high Cr content were found to suffer from poor long-term creep resistance. The reason for this is a phase transformation that after a few years replaces the fine dispersion of VN precipitates with coarse precipitates of Z-phase Cr(Nb,V)N [1]. Danielsen and Hald [2] suggested a new...
Abstract
View Paper
PDF
Higher steam temperature in steam power plants increases their thermal efficiency. Thus there is a strong demand for new materials with better creep and corrosion resistance at higher temperatures, while retaining the thermal flexibility of martensitic steels. Z-phase strengthened 12% Cr steels have been developed to meet the 923 K (650°C) challenge in these power plants. Ta, Nb, or V forms Z-phase together with Cr and N. A new trial steel was produced based on combining Ta and Nb to form Z-phase. It was shown that Z-phase was formed with a composition corresponding to Cr1+x(Nb,Ta)1-xN. The Nb/Ta ratio in Z-phase precipitates was higher than that in MX precipitates. Z-phase precipitates based on Ta and Nb were coarser than precipitates in a similar trial steel based on Ta alone.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
... of the structure. The classic nucleation theory may allow us to consider another scenario that the continuous precipitation favorably occurs when the volume change due to the phase transformation is relatively small but the discontinuous precipitation preferably takes place when the volume change is relatively...
Abstract
View Paper
PDF
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 11-21, October 21–24, 2019,
... within the extended composition range of the cubic C15 Laves phase, but clearly decrease when the composition approaches the boundaries of the homogeneity range where the C15 structure transforms to the off stoichiometric, hexagonal C36 and C14 structure on the Co-rich and Nb-rich, respectively...
Abstract
View Paper
PDF
Laves phases are intermetallic phases well known for their excellent strength at high temperatures but also for their pronounced brittleness at low temperatures. Especially in high-alloyed steels, Laves phases were long time regarded as detrimental phases as they were found to embrittle the material. Perusing the more recent literature, it seems the negative opinion about the Laves phases has changed during the last years. It is reported that, if the precipitation morphology is properly controlled, transition metal-based Laves phases can act as effective strengthening phases in heat resistant steels without causing embrittlement. For a targeted materials development, the mechanical properties of pure Laves phases should be known. However, the basic knowledge and understanding of the mechanical behavior of Laves phases is very limited. Here we present an overview of experimental results obtained by micromechanical testing of single-crystalline NbCo 2 Laves phase samples with varying crystal structure, orientation, and composition. For this purpose, diffusion layers with concentration gradients covering the complete homogeneity ranges of the hexagonal C14, cubic C15 and hexagonal C36 NbCo 2 Laves phases were grown by the diffusion couple technique. The hardness and Young's modulus of NbCo 2 were probed by nanoindentation scans along the concentration gradient. Single-phase and single crystalline microcantilevers and micropillars of the NbCo 2 Laves phase with different compositions were cut in the diffusion layers by focused ion beam milling. The fracture toughness and the critical resolved shear stress (CRSS) were measured by in-situ microcantilever bending tests and micropillar compression tests, respectively. The hardness, Young's modulus and CRSS are nearly constant within the extended composition range of the cubic C15 Laves phase, but clearly decrease when the composition approaches the boundaries of the homogeneity range where the C15 structure transforms to the off stoichiometric, hexagonal C36 and C14 structure on the Co-rich and Nb-rich, respectively. In contrast, microcantilever fracture tests do not show this effect but indicate that the fracture toughness is independent of crystal structure and chemical composition of the NbCo 2 Laves phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1395-1401, October 21–24, 2019,
... composed of a2/g lamellar colony and equiaxed g grain. Fully lamellar with volume fraction of lamellar (VL) of 100 % , duplex with VL of 50 % and equiaxed g single phase with VL of 0 % can be obtained by using phase transformation from a g. Creep property highly depends on microstructure. Fully lamellar...
Abstract
View Paper
PDF
The creep behavior of a γ-TiAl based alloy at 1073 K was investigated, examining three different microstructures: equiaxed γ (Eγ), γ/γ fully lamellar (FLγ), and equiaxed γ with α 2 phase on grain boundaries (Eγα 2 ). The aim was to understand the influence of lamellar interfaces and grain boundary α 2 phase on creep behavior. Initially, creep rates were consistent across all specimens upon loading. However, Eγ exhibited a gradual decrease in creep rate compared to Eγα 2 and FLγ. Notably, the minimum creep rate of Eγ was one order of magnitude lower than that of Eγα 2 and FLγ. Conversely, Eγα 2 and FLγ displayed a slight acceleration and the longest rupture strain, albeit with the shortest rupture time compared to Eγ. Upon microstructural analysis of of the creep-test specimens, it was observed that numerous dynamic recrystallized grains (DXGs) and sub-grains formed along grain boundaries and interiors in Eγ, whereas they were limited to the region along grain boundaries in FLγ. In contrast, very few DXGs were formed in Eγα 2 . These findings indicate that γ/γ interfaces inhibit the extension of DXGs into grain interiors, suggesting that the grain boundary α 2 phase effectively suppresses the formation of DXGs.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
..., that is, ferromagnetism appears in Super304H tube with the increase of service time. 2.1 Martensite phase transformation mechanism in austenitic heat-resistant steel boiler tubes Shi Zhigang et al. analyzed in [Literature] and believed that the wall temperature of austenitic heat-resistant steel boiler tubes in service...
Abstract
View Paper
PDF
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
1