Skip Nav Destination
Close Modal
Search Results for
phase equilibria
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 23
Search Results for phase equilibria
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1402-1407, October 21–24, 2019,
... on the phase equilibria. SXES for carbon analysis was used and the peak intensity of the second reflection of carbon Kα is analyzed using the fully homogenized sample having different C content under the optimum condition to make the accurate calibration curves. The obtained calibration curve is in an accuracy...
Abstract
View Papertitled, Effect of Carbon in Solution on <span class="search-highlight">Phase</span> <span class="search-highlight">Equilibria</span> among β/α(α 2 )/γ <span class="search-highlight">Phases</span> in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
View
PDF
for content titled, Effect of Carbon in Solution on <span class="search-highlight">Phase</span> <span class="search-highlight">Equilibria</span> among β/α(α 2 )/γ <span class="search-highlight">Phases</span> in TiAl Alloys Using Soft X-Ray Emission Spectroscopy
Interstitial carbon (C) in β-Ti, α-Ti, α 2 -Ti 3 Al and γ-TiAl phases present in the γ-TiAl alloys with and without substitutional elements (M: transition element) is quantitatively analyzed using soft X-ray emission spectroscopy (SXES), in order to reveal the effect of solute carbon on the phase equilibria. SXES for carbon analysis was used and the peak intensity of the second reflection of carbon Kα is analyzed using the fully homogenized sample having different C content under the optimum condition to make the accurate calibration curves. The obtained calibration curve is in an accuracy of ± 0.07 at. % C. In all heat treated alloys, no carbide is observed. In Ti-Al binary system, the α+γ phase region shifts toward higher Ti side, and the volume fraction of γ phase increases slightly with the carbon addition. In all system, carbon preferentially partitions into the α phase, followed by less partitioning in the γ and β phases in order. The carbon content in the β phase remains unchanged of almost 0.05 at. % regardless of carbon addition in Ti-Al-V system and the partition coefficient of carbon between the α and γ phases becomes larger in Ti-Al-V system than that in TiAl binary system.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1436-1445, October 21–24, 2019,
...-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K...
Abstract
View Papertitled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on <span class="search-highlight">Phase</span> Diagram Study at Elevated Temperature
View
PDF
for content titled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on <span class="search-highlight">Phase</span> Diagram Study at Elevated Temperature
Strengthening of Ni-based superalloys is in principle designed using GCP (Geometrically Close-packed phase) of Ni 3 Al-γ' (L1 2 ). However, game-changing microstructural design principle without relying on γ' phase will be needed for further development of the alloys. We are currently constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K, based on experiment and calculation. In Ni-Cr-Mo system, Ni 2 (Cr, Mo) with oP6 Pearson symbol, which is stable at about 873 K in Ni-Cr binary system, is formed to exist even at 1073 K. oP6 phase is coherently formed in A1 matrix with a crystallographic orientation of {110} A1 // (100) oP6 , <001>Α1 // [010]oP6, indicating GCP at composition range around Ni-15Cr-15Mo as island. In Mo-rich region there is Α1/NiMo/oP6 three-phase coexisting region, whereas another three-phase coexisting region of Α1/P/oP6 exists in Cr-rich region. Based on vertical section, it is possible to design microstructure with TCP at grain boundaries, together with oP6 phase within grain interiors by two-step heat treatment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... equilibria in the Mo-TiC system is required. Eremenko et al. investigated the isothermal section of Mo-Ti-C at 1400, 1700, 2000 and 2200 ºC [6]. Rudy et al. investigated the isothermal section at 1500, 1750, 2500 and 2750 ºC [11]. However, the change in Mo/TiC two phase region with temperature...
Abstract
View Papertitled, Effect of Off-Stoichiometry on Elastic Modulus of TiC <span class="search-highlight">Phase</span> in Mo-TiC Ternary System
View
PDF
for content titled, Effect of Off-Stoichiometry on Elastic Modulus of TiC <span class="search-highlight">Phase</span> in Mo-TiC Ternary System
MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused not only by the continuity of Mo solid solution in solidification microstructure but also by TiC phase affecting as a fracture-resistant phase. In order to understand the microstructure evolution during solidification and the effect of TiC phase on the fracture toughness of the MoSiBTiC alloy, Mo-Ti-C ternary model alloys are dealt with in this study. Then, (1) liquidus surface projection and (2) isothermal section and the elastic moduli of TiC phase in equilibrium with Mo solid solution were focused on. The obtained liquidus surface projection suggests that the ternary transition peritectic reaction (L+ Mo 2 C->Mo+TiC) takes place in Mo-rich region. At 1800 °C, TiC phase in equilibrium with Mo phase contains at least 20.2 at% Mo and the Mo/TiC/Mo 2 C three phase region should exist around Mo-15Ti-10C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1418-1428, October 21–24, 2019,
... Conference, Zurich, April 2009, pp. 31-43. [5] Takeyama M., Gomi N., Morita S., Matsuo T., Phase Equilibria and Lattice Parameters of Fe2Nb Laves Phase in Fe-Ni-Nb Ternary System at Elevated Temperatures Mater. Res. Soc. Symp. Proc. Vol. 842 (2005) pp. 461- 466. [6] Hasebe Y., Hashimoto K, Matsuo T...
Abstract
View Papertitled, Precipitation Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) <span class="search-highlight">Phases</span> in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
View
PDF
for content titled, Precipitation Kinetics of TCP (Fe 2 Nb) and GCP (Ni 3 Nb) <span class="search-highlight">Phases</span> in Fe-Cr-Ni-Nb Austenitic Heat-Resistant Steels with Partial Replacement of Nb with Ta
In the present study, the precipitation kinetics of topologically close-packed (TCP) Fe 2 Nb Laves and geometrically close-packed (GCP) Ni 3 Nb phases is studied quantitatively in experimental alloys with different Ta / Nb+Ta ratio, to clarify the mec4hanism of the Ta effect. The microstructure of alloys is changed from Widmanstätten structure to lamellar structure due to discontinuous precipitation, with increasing Ta / Nb+Ta. It is confirmed that Ta partitions into both Fe 2 Nb Laves and Ni 3 Nb phases. However, two phases stability is changed by added Ta content. Ta accelerates the formation kinetics of the precipitates at grain boundaries, as well as γ“-GCP phase within grain interiors, due to increased supersaturation by Ta addition. Besides, Ta retards the transformation kinetics of metastable γ“-Ni 3 Nb to stable the δ-Ni 3 Nb phase. The results indicate that Ta decreases the driving force for the transformation of the δ-GCP phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1279-1288, February 25–28, 2025,
...-Based Superalloys for high-pressure turbine blade materials in aircraft engines and gas turbines. Miyamoto et al. [1] reported for the first time the relationship between composition and phase equilibria of MoSiBTiC alloys. They found that the addition of TiC to Mo+Mo5SiB2 two-phase alloys leads...
Abstract
View Papertitled, Oxidation and Mechanical Properties of Ultrafine-Grained MoSiBTiC Alloy Produced by Rapid Solidification
View
PDF
for content titled, Oxidation and Mechanical Properties of Ultrafine-Grained MoSiBTiC Alloy Produced by Rapid Solidification
The microstructural evolution of the MoSiBTiC alloy by rapid solidification and its effect on oxidation and mechanical properties were investigated in this study. A Mo-5Si-10B-10Ti-10C (at%) alloy was produced by a conventional arc-melting technique in an Ar atmosphere, and then it was rapidly solidified by tilt-casting into a rod-shaped copper hearth. Vickers hardness values increased drastically above 1000 Hv due to the microstructure refinement through rapid solidification. They rose from the center toward the outer surface, ranging from about 1100 to 1300 Hv. Interestingly, the oxidation resistance of the rapidly solidified MoSiBTiC alloy at 1100 °C was dramatically improved, probably due to the microstructure refinement effect with ultrafine grains. However, the fracture toughness value of the rapidly solidified MoSiBTiC alloy was about 8 MPa·m 1/2 , less than half of the cast and heat-treated MoSiBTiC alloy previously reported. Heat treatment and composition optimization will further improve the performance of the rapidly solidified MoSiBTiC alloy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 371-381, October 22–25, 2013,
... Superalloys , J. Japan Inst. Met., Vol. 71, No. 3 (2007), pp. 320-325. [9] Villars, P., Prince, A., Okamoto, H., Handbook of ternary alloy phase diagrams, Ohio, USA, ASM International, 1995 [10] Miyazaki, S., Murata, Y., and Morinaga, M. Site Occupancy of Re Atoms in Ni3Al and Phase Equilibria in Ni-Al-Re...
Abstract
View Papertitled, Formation of Diffusion Zones in Coated Ni-Al-X Ternary Alloys and Ni-Based Superalloys
View
PDF
for content titled, Formation of Diffusion Zones in Coated Ni-Al-X Ternary Alloys and Ni-Based Superalloys
Coatings are an essential part of the materials system to protect the turbine blades from oxidation and corrosive attack during service. Inter-diffusion of alloying elements between a turbine blade substrate and their coatings is a potential concern for coated turbine blades at ever increasing operating temperatures because this can cause the formation of undesirable Secondary Reaction Zones (SRZs), which may degrade the mechanical properties of coated Ni-based superalloys. Understanding the effects of each element on the SRZ formation is essential in order to understand both the mechanism and inter-diffusion behaviour between coatings and substrates. In this research, a number of simpler aluminized ternary Ni-Al-X (where X is Co, Cr, Re, Ru or Ta) alloys were investigated in order to elucidate the separate effects of each element on the microstructural evolution, especially at the coating/substrate interface. The aluminized ternary alloys developed distinctive diffusion zones, depending on the third alloy element, ‘X’. Specifically, it has been found that both Ni-Al-Re and Ni-Al-Ta alloys developed a continuous SRZ-like diffusion layer. This diffusion zone persisted in the Ni-Al-Re alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1352-1362, October 22–25, 2013,
... in Advanced Maetrials for Use in Ultrasupercritical Coal Power Plants", Proceedings of ECCC Creep Conference, Zurich, April 2009, pp. 31-43. [5] Takeyama M., Gomi N., Morita S., Matsuo T., Phase Equilibria and Lattice Parameters of Fe2Nb Laves Phase in Fe-Ni-Nb Ternary System at Elevated Temperatures Mater...
Abstract
View Papertitled, Creep of the Novel Austenitic Heat Resistant Steel of Fe-20Cr-30Ni-2Nb under Steam Atmosphere at 1073 K
View
PDF
for content titled, Creep of the Novel Austenitic Heat Resistant Steel of Fe-20Cr-30Ni-2Nb under Steam Atmosphere at 1073 K
In this study, we have examined the creep of a novel austenitic heat resistant steel of Fe-20Cr- 30Ni-2Nb (at.%) steel at 1073K in steam and air atmospheres. Our studied steels were Fe-20Cr- 30Ni-2Nb (base steel) and that with 0.03 at. %B (B-doped steel) . The addition of boron is to intentionally increase the area fraction of Laves phase on grain boundaries (ρ). The specimen with ρ = 43% (base steel pre-aged at 1073 K/240 h) exhibits the rupture life of 262 h, whereas the rupture life of the specimen with higher ρ of 80% (B-doped steel pre-aged at 1073 K/240 h) is 833h, which is about three times longer than that of the specimen with ρ = 43%. The specimen with ρ = 80% exhibits smaller creep rate than those with lower ρ than 43% in the entire creep stage. In addition, all specimens show the creep rupture strain of about 60%. The creep rupture life is almost same to that tested under air, whereas the creep rupture strain is slightly smaller (a few percent) than that under air. In the surface of the creep ruptured specimen in steam, the intergranular oxides associated with voids or cavities are often present and grow along grain boundaries to over 100 μm in depth. The intergranular oxidation occurs more extensively in steam rather than air. These results demonstrate that stable Fe 2 Nb Laves phase on grain boundary could increase the creep resistance of the present steel at 1073K without ductility loss in steam as well as air, resulting in the pronounced extension of rupture life. The intergranular oxidation accelerated by steam would not give a serious effect on the creep properties of the present steel below 103 hours in rupture life.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1469-1475, October 21–24, 2019,
... transformations in Nb-rich TiAl alloys during quenching with different rates , Adv. Eng Mater., 13, (2011), pp. 700-704. [6] Schuster, J. C., Palm, M., Reassessment of the Binary Aluminum-Titanium Phase Diagram , Journal of Phase Equilibria and Diffusion, 27, (2006), pp. 255-277. [7] Ohnuma, I., Fujita, Y...
Abstract
View Papertitled, Stability of Ordered B2-β o and Disordered bcc-β <span class="search-highlight">Phases</span> in TiAl—A First Principles Study
View
PDF
for content titled, Stability of Ordered B2-β o and Disordered bcc-β <span class="search-highlight">Phases</span> in TiAl—A First Principles Study
Either at higher temperatures or when a certain alloying element content is exceeded, γ-TiAl alloys contain the β phase (bcc) or its ordered derivate β o (B2). The relatively soft β phase can facilitate hot deformation, but β o is detrimental for creep strength and ductility. Thus, knowledge about β o →β phase transformation is desirable. Surprisingly, for the binary Ti-Al system it is under discussion whether the ordered β o phase exists. Also, the effect of alloying elements on the β phase ordering is still unclear. In the present work the ordering of the β phase in binary Ti-(39,42,45)Al and ternary Ti-42Al-2X alloys (X=Fe, Cr, Nb, Ta, Mo) which was experimentally investigated by neutron and high energy X-ray diffraction is compared with the results of first principles calculations using density functional theory. Except for Cr the experimentally determined and the predicted behavior correspond.
Proceedings Papers
Effect of Grain-Boundary TCP P(oP56) Phase on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1257-1268, February 25–28, 2025,
.... Takeyama, Phase equilibria among A1/TCP/GCP phases and microstructure formation in Ni-Cr-Mo system at elevated temperatures , Superalloys 2020 Proceedings (2021), pp. 131-141 [10] M. Hillert, Phase equilibria Phase Diagram and Phase Transformation -Their thermodynamic Bases , Cambridge Univ. Press (1998...
Abstract
View Papertitled, Effect of Grain-Boundary TCP P(oP56) <span class="search-highlight">Phase</span> on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
View
PDF
for content titled, Effect of Grain-Boundary TCP P(oP56) <span class="search-highlight">Phase</span> on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
This study investigates the role of grain-boundary precipitates in enhancing creep rupture strength of Ni-based alloys through analysis of Ni-15Cr-15Mo and Ni-15Cr-17Mo (at.%) model alloys. The investigation focused on the “Grain-boundary Precipitation Strengthening (GBPS)” effect from the thermally stable TCP phase, a phenomenon previously observed in Fe-Cr-Ni-Nb austenitic heat-resistant steels. Through multi-step heat treatments, specimens were prepared with varying grain boundary coverage ratios (ρ) of TCP P phase (oP56) and consistent grain-interior hardness from GCP Ni2(Cr, Mo) phase (oP6). In the 15 at.% Mo alloy, specimens with a higher coverage ratio (~80%) demonstrated significantly improved creep performance, achieving nearly four times longer rupture time (3793 h vs. 1090 h) at 300 MPa and 973 K compared to specimens with lower coverage (~35%). However, the 17 at.% Mo alloy showed unexpectedly lower performance despite high coverage ratios, attributed to preferential cavity formation at bare grain boundaries. These findings confirm that GBPS via thermally stable TCP phase effectively enhances creep properties in Ni-based alloys, with grain boundary coverage ratio being more crucial than intragranular precipitation density.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 386-392, August 31–September 3, 2010,
..., and the critical segregation index (SIc) which is determined experimentally. In the present study, is estimated by a thermodynamic caluculation of the liquid/solid phase equilibria. There seems to be a clear tendency that for positive macro segregation runs upward, while for negative macro segregation occurs...
Abstract
View Papertitled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
View
PDF
for content titled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
A new Ni-base superalloy has been developed for Advanced Ultra Super Critical (A-USC) power plants operating above 750°C, targeting reduced CO 2 emissions through improved efficiency. While existing research focuses on 700°C-class materials, this study presents a novel alloy design for higher-temperature applications. Using the CALPHAD method, a prototype alloy (Ni-23Co-18Cr-8W-4Al-0.1C) was developed by eliminating Ti, Nb, and Ta to improve hot-workability while maintaining strength. The resulting alloy demonstrates twice the creep strength of Nimonic 263, with an estimated 10 5 h steam turbine creep resistance temperature of 780°C, marking a significant advancement in A-USC material capabilities.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 662-668, February 25–28, 2025,
... MATSUURA acknowledges support from GP-MS at Tohoku University. REFERENCES [1] E. K. Storms, The Refractory Carbides, Academic Press (1967) [2] S. Miyamoto, K. Yoshimi, S. Ha, T. Kaneko, J. Nakamura, T. Sato, K. Maruyama, R. Tu, T. Goto, Phase equilibria, microstructure, and high-temperature strength of TiC...
Abstract
View Papertitled, Off-Stoichiometric Effect on Properties of TiC
View
PDF
for content titled, Off-Stoichiometric Effect on Properties of TiC
Titanium carbide (TiC) have a wide off-stoichiometric composition when in equilibrium with the metallic phase. In this case, the off-stoichiometric effect allows the substitution of other transition metals (TM) at the Ti site and vacancy formation at the C site. It leads to changes in the material properties of TiC. Therefore, it is important to investigate the change of material properties with the off-stoichiometric effect. In this study, the elastic properties of (Ti, TM)C x were focused on. To investigate the change of elastic properties with various transition metals substitution, elastic properties were evaluated by first-principles calculations. From the calculation, it was suggested that bulk modulus is controlled by the 1st and 2nd nearest neighbor bond, but shear modulus is mainly affected by only the 1 st nearest neighbor bond. Therefore, it was indicated that proper control of the fraction of transition metals and vacancy could be possible for designing (Ti.TM)C x with high strength and toughness.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 592-599, February 25–28, 2025,
... from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME...
Abstract
View Papertitled, Innovative Design of Advanced Niobium-Based Alloys for Extreme High-Temperature Applications
View
PDF
for content titled, Innovative Design of Advanced Niobium-Based Alloys for Extreme High-Temperature Applications
The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 795-802, October 21–24, 2019,
... the initiation of creep rupture process. ACKNOWLEDGMENTS This work was supported by the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology (JST) (No. JPMJAL1303). REFERENCES 801 [1] Miyamoto, S. et al, Phase Equilibria, Microstructure, and High Temperature...
Abstract
View Papertitled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
View
PDF
for content titled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates are largely rotated and Moss works as sticky ligament in the small-plate-reinforced metal-matrix composites. This may be the reason why the MoSiBTiC alloy exhibits large creep elongation and excellent creep resistance. In other words, the evolution of microstructures infers that the consummation of Mo 5 SiB 2 plate rotation may lead to the initiation of creep rapture process. Therefore, the unique microstructure formed during solidification provides the feature of good mechanical properties for the 1st generation MoSiBTiC alloy.
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, February 25–28, 2025,
...-property-performane reciprocity, Sci. Technol. Adv. Mater. 19, (2018), pp. 649659. [2] S. Miyamoto et al., Phase Equilibria, Microstructure, and High-Temperature Strength of TiCAdded Mo-Si-B Alloys, Metall. Mater. Trance. A Phys. Metall. Mater. Sci. 45, (2014), pp. 1112-1123. [3] S. Yamamoto et al...
Abstract
View Papertitled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
View
PDF
for content titled, Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1408-1417, October 21–24, 2019,
... of the " phase of metastable phase. <,4 [1] Masao Takeyama, Pundamentals of Physical Metallurgy for High-temperature Materials Microstructure Control and Design- July. 2008. [2] Yusaku Hasebe, Kiyoshi Hashimoto and Masao Takeyama Phase Equilibria among "- Fe/Fe2Nb/Ni3Nb Phases in Fe-Ni-Nb Ternary System...
Abstract
View Papertitled, Experimental and Computational Study on Grain Boundary and Grain Interior Precipitation of Fe 2 Nb Laves <span class="search-highlight">Phase</span> in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
View
PDF
for content titled, Experimental and Computational Study on Grain Boundary and Grain Interior Precipitation of Fe 2 Nb Laves <span class="search-highlight">Phase</span> in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through experimental study at different temperatures and thermokinetic calculation. The steel samples were prepared by arc melting followed by 65% cold rolling. Subsequently, the samples were solution treated within the γ single-phase region to control the grain size to approximately 150 μm. Aging of the solution-treated samples was carried out at temperatures ranging from 973 K to 1473 K for up to 3600 hours. Microstructural observations were conducted using FE-SEM, and the chemical compositions of the γ matrix and precipitates of Laves and δ phases were analyzed using EPMA. The precipitation modeling was performed using MatCalc software, utilizing a thermodynamic database constructed by our research group to calculate the chemical potential of each phase. Classical nucleation theory was applied for nucleation, while the SFFK model was employed for the growth and coarsening stages. Distinct phases were defined for grain boundary and grain interior Laves phase, with all precipitates assumed to have spherical morphology in the calculations. The precipitation start time was defined as the time when the precipitate fraction reached 1%. Experimental results indicated that above 973 K, Laves phase nucleation primarily occurred on grain boundaries before extending into the grain interior, with the nose temperature located around 1273 K. To replicate the experimentally determined Time-Temperature-Precipitation (TTP) diagram, interaction parameters among elements were adjusted. Additionally, by introducing lower interfacial energy between the γ matrix and Laves phase, the TTP diagram was successfully reproduced via calculation, suggesting relative stability at the interface.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 904-913, October 21–24, 2019,
..., (2007), pp. 338-348. [4] Kobayashi, S., Sato, K., Hayashi, E., Osaka, T., Konno, T. J., Kaneno, Y., Takasugi, T., Alloying Effects on the Phase Equilibria among Ni(A1), Ni3Al(L12) and Ni3V(D022) Phases, Intermetallics, Vol. 23, (2012), pp. 68-75. [5] Takasugi, T., Kaneno, Y., Properties...
Abstract
View Papertitled, Effect of Heat Treatment on Microstructure and Mechanical Properties of Dual Two-<span class="search-highlight">Phase</span> Ni 3 Al and Ni 3 V Intermetallic Alloys
View
PDF
for content titled, Effect of Heat Treatment on Microstructure and Mechanical Properties of Dual Two-<span class="search-highlight">Phase</span> Ni 3 Al and Ni 3 V Intermetallic Alloys
So-called Ni base dual two-phase intermetallic alloys are composed of primary Ni 3 Al (L1 2 ) phase precipitates among eutectoid microstructures consisting of the Ni 3 Al and Ni 3 V (D0 22 ) phases. In this article, microstructural refinement of an alloy with a nominal composition of Ni 75 Al 10 V 15 (in at.%) was attempted by various heat treatment processes. When the alloy was continuously cooled down after solution treatment, fine and cuboidal Ni 3 Al precipitates were developed by rapid cooling while coarse, rounded and coalesced Ni 3 Al precipitates were developed by slow cooling. When the alloy was isothermally annealed at temperatures above the eutectoid temperature, the morphology of the Ni 3 Al precipitates changed from fine and cuboidal one to large and rounded one with increase in annealing time. When the alloy was annealed at temperatures below the eutectoid temperature, the Ni 3 Al precipitates were grown keeping cuboidal morphology. The morphological change from the cuboidal to rounded Ni 3 Al precipitates was induced by the transition from the growth driven by elastic interaction energy between the precipitate and matrix to that by the surface energy of the precipitate. Fine and cuboidal Ni 3 Al precipitates generally resulted in high hardness.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1446-1456, October 21–24, 2019,
..., Report of the 123rd Committee on Heat-Resisting Materials and Alloys Japan Society for the Promotion of Science 60 (1), (2019), pp.131 [18] M. Takeyama, Y. Ohmura, Makoto Kikuchi and T. Matsuo, Phase equilibria and microstructural control of gamma TiAl based alloys Intermetallics 6, (1998), pp. 643-646...
Abstract
View Papertitled, Microstructure Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
View
PDF
for content titled, Microstructure Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
Effects of microstructure constituents of α 2 -Ti 3 Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. Microstructure analysis have revealed that intragranular fracture along γ/γ grain boundary occurred in γ single phase alloy whereas it does not along β/γ interphase in alloys containing β phase. In addition, local strain accumulations along β/γ interphase have been confirmed. The present results, thus, confirmed the significant contribution of β phase, especially the existence of β/γ interphase to enhancement of the room-temperature ductility in multicomponent TiAl alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 762-770, October 21–24, 2019,
... containing Si," Intermetallics, 48 (2014), pp. 62-70. httpsdoi.org/10.1016/j.intermet.2013.11.002 [19] H. Okamoto, "Cr-Si (Chromium-Silicon Journal of Phase Equilibria, 22(5) (2001), pp. 593593. 10.1007/s11669-001-0089-8 [20] A. Soleimani-Dorcheh, M.C. Galetz, "Oxidation and Nitridation Behavior of Cr Si...
Abstract
View Papertitled, Microstructure and High-Temperature Strength in Cr-Si Binary Alloys
View
PDF
for content titled, Microstructure and High-Temperature Strength in Cr-Si Binary Alloys
Cr-based alloys have potential as heat-resistant materials due to the higher melting point and lower density of Cr. Although oxidation and nitridation at high temperatures are one of the drawbacks of Cr and Cr-based alloys, addition of Si has been reported to enhance the oxidation and nitridation resistance. This study focuses on the microstructure and mechanical properties in the Cr-Si binary alloys with the Cr ss + Cr 3 Si two-phase structure. The Cr-16at.%Si alloy showed an eutectic microstructure and hypoeutectic alloys with the lower Si composition exhibited a combination of the primary Cr ss and the Cr ss /Cr 3 Si eutectic microstructure. Compression tests at elevated temperatures were conducted for the hypoeutectic and the eutectic alloys in vacuum environment. Among the investigated alloys, the Cr-13at.%Si hypoeutectic alloy including the Cr 3 Si phase of about 40% was found to show the highest 0.2% proof stress of 526 MPa at 1000 °C. Its specific strength is 78.1 Nm/g which is roughly twice as high as that of Ni-based Mar-M247 alloy. It was also confirmed that the 0.2% proof stress at 1000 °C depends on not only the volume fraction of the Cr 3 Si phase, but also the morphology of the Cr ss + Cr 3 Si two-phase microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... al., Sigma phase evolution and nucleation mechanisms revealed by atom probe tomography in a 347H stainless steel, Materialia, Vol. 24 (2022), p. 101485. [7] Yamamoto, Y. et al., Creep Behavior and Phase Equilibria in Model Precipitate Strengthened Alumina-Forming Austenitic Alloys, JOM, Vol. 74...
Abstract
View Papertitled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 295-303, October 11–14, 2016,
.... Yamamoto, M.L. Santella, M.P. Brady, H. Bei, P.J. Maziasz, "Effect of alloying additions on phase equilibria and creep resistance of alumina-frming austenitic stainless steels", Metallurgical and Materials Transactions A, Vol. 40, No. 8 (2009), pp. 1868-1880. [15] B. Hu, G. Trotter, I. Baker, M.K. Miller...
Abstract
View Papertitled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
View
PDF
for content titled, Creep Failure of a Gamma Prime-Strengthened Alumina-Forming Austenitic Stainless Steel
Alumina-forming austenitic stainless steels (AFAs) are potential materials for boiler/steam turbine applications in next generation fossil fuel power plants. They display a combination of good high temperature creep strength, excellent oxidation resistance and low cost. A recently-developed AFA alloy based on Fe-14Cr-32Ni-3Nb-3Al-2Ti (wt.%) shows better creep performance than a commercially-available Fe-based superalloy. In this paper we used scanning electron microscopy and transmission electron microscopy to study the fracture surfaces and cracking behavior in relation to the precipitates present in creep failure samples of this alloy tested at either 750°C/100 MPa or 700°C/170 MPa. It was found that most cracks are formed along the grain boundaries with precipitate-free zones beside the grain boundaries potentially providing the path for propagation of cracks.
1