Skip Nav Destination
Close Modal
Search Results for
oxidation resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 342
Search Results for oxidation resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 412-419, October 25–28, 2004,
... Abstract This paper investigates the combined effect of shot peening and pre-oxidation treatment in air on the subsequent steam oxidation resistance of Modified 9Cr-1Mo steel with different sulfur contents. Cast steel balls (50-180 μm diameter) and pure Cr (50-230 μm diameter) were used...
Abstract
View Papertitled, Effect of Shot Peening and Pre-<span class="search-highlight">oxidation</span> Treatment in Air on Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Mod.9Cr-1Mo Steel
View
PDF
for content titled, Effect of Shot Peening and Pre-<span class="search-highlight">oxidation</span> Treatment in Air on Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Mod.9Cr-1Mo Steel
This paper investigates the combined effect of shot peening and pre-oxidation treatment in air on the subsequent steam oxidation resistance of Modified 9Cr-1Mo steel with different sulfur contents. Cast steel balls (50-180 μm diameter) and pure Cr (50-230 μm diameter) were used for shot peening durations of 5-50 seconds. After shot peening, pre-oxidation was performed in air at 973K for 3.6ks. Then, oxidation testing was conducted in steam at 923K for up to 3.6Ms. Only the combination of Cr shot peening and pre-oxidation treatment facilitated the formation of a protective Cr-rich oxide scale on the specimen surface during pre-oxidation. This Cr-rich oxide scale remained stable during subsequent steam oxidation, resulting in excellent oxidation resistance of the steel.
Proceedings Papers
Improvement in Creep and Steam Oxidation Resistance of Precipitation Strengthened Ferritic Steels
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 96-103, October 21–24, 2019,
... steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions...
Abstract
View Papertitled, Improvement in Creep and Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Precipitation Strengthened Ferritic Steels
View
PDF
for content titled, Improvement in Creep and Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Precipitation Strengthened Ferritic Steels
To save fossil fuel resources and to reduce CO 2 emissions, considerable effort has been directed toward researching and developing heat-resistant materials that can help in improving the energy efficiency of thermal power plants by increasing their operational temperature and pressure conditions. Instead of conventional 9-12Cr ferritic heat-resistant steels with a tempered martensitic microstructure, we developed “Precipitation Strengthened 15Cr Ferritic Steel” based on a new material design concept: a solid-solution treated ferrite matrix strengthened by precipitates. Creep tests for 15Cr-1Mo-6W-3Co-V-Nb steels with ferrite matrix strengthened by a mainly Laves phase (Fe 2 W) showed that the creep strengths of 15Cr ferritic steel at temperatures ranging from 923 K to 1023 K were twice as high as those of conventional 9Cr ferric heat-resistant steel. 15Cr steels have higher steam oxidation resistance than that of conventional steel in the same temperature range as the creep tests. Thus, the new material design concept of heat-resistant steel pro- vides improved creep strength and steam oxidation resistance. We are attempting to determine the optimum compositions, especially that of carbon, in order to improve the high-temperature creep strength.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... Abstract A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent...
Abstract
View Papertitled, Microstructural Evolution and Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 647-654, October 21–24, 2019,
... higher steam parameters of up to about 650 °C steam (ie about max 700 °C metal) without the need for expensive nickel based alloys. The aim of the present study is the investigation of the steam oxidation resistance of the Sanicro 25. The long term test was conducted in the temperature range 600 -750 °C...
Abstract
View Papertitled, Investigation of the Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC Fossil Power Plants
View
PDF
for content titled, Investigation of the Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC Fossil Power Plants
Sanicro 25 material is approved for use in pressure vessels and boilers according ASME code case 2752, 2753 and VdTUV blatt 555. It shows higher creep rupture strength than any other austenitic stainless steels available today. It is a material for superheater and reheaters, enabling higher steam parameters of up to about 650 °C steam (ie about max 700 °C metal) without the need for expensive nickel based alloys. The aim of the present study is the investigation of the steam oxidation resistance of the Sanicro 25. The long term test was conducted in the temperature range 600 -750 °C up to 20 000 hours. The morphology of the oxide scale and the microstructure of the bulk material were investigated. In addition, the effect of surface finish and pressure on the steam oxidation were also studied.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 855-866, October 11–14, 2016,
... to improve the overall oxidation resistance in steam. Decreasing the oxidation rate directly impacts the volume of exfoliated scale. The adherent spinel scales are thinner and more robust than non-shot peened tubes of the same alloy. Most of the improved oxidation resistance can be attributed to the presence...
Abstract
View Papertitled, <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
View
PDF
for content titled, <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
Steam-side oxidation and the resultant exfoliation of iron-based scales cause unplanned shutdowns at coal-fired power generation plants. Exfoliate removal is currently limited to frequent unit cycling to minimize the volume of exfoliated scale, upgrading a plant with a “blow down” system, or installing a higher alloy. This paper discusses the rate of steam-side oxidation on Type 304H stainless steel (304H) tube after shot peening the internal surface with commercially available techniques. Shot peening the ID of Type 304H austenitic stainless steel superheater tubes has been shown to improve the overall oxidation resistance in steam. Decreasing the oxidation rate directly impacts the volume of exfoliated scale. The adherent spinel scales are thinner and more robust than non-shot peened tubes of the same alloy. Most of the improved oxidation resistance can be attributed to the presence of a spinel oxide layer combined with a continuous chromia layer formed near the steam-touched surfaces. The presence of a continuous chromia layer vastly reduces the outward diffusion of iron and minimizes the formation of iron-based scales that exfoliate. This work showed that a uniform cold-worker layer along the tube ID has a profound effect on oxidation resistance. Incomplete coverage allows oxidation to proceed in the non-hardened regions at a rate comparable to the oxidation rate on unpeened Type 304H.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 900-911, October 11–14, 2016,
... Diffractometer (XRD). Mass change data have been examined every 250 hours. A-USC coal-fired power plants austenitic stainless steel high temperature oxidation test nickel based alloys scanning electron microscopy coupled with energy dispersive spectrometry steam oxidation resistance X-ray...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
The A-USC technology is still under development due to limited number of materials complying with the requirements of high creep strength and high performance in highly aggressive corrosion environments. Development of power plant in much higher temperatures than A-USC is currently impossible due to the materials limitation. Currently, nickel-based superalloys besides advanced austenitic steels are the viable candidates for some of the A-USC components in the boiler, turbine, and piping systems due to higher strength and improved corrosion resistance than standard ferritic or austenitic stainless steels. The paper, presents the study performed at 800 °C for 3000 hours on 3 advanced austenitic steels; 309S, 310S and HR3C with higher than 20 Cr wt% content and 4 Ni-based alloys including: two solid-solution strengthened alloys (Haynes 230), 617 alloy and two (γ’) gamma - prime strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray Diffractometer (XRD). Mass change data have been examined every 250 hours.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results...
Abstract
View Papertitled, Influence of Aluminum Diffusion Layer on T/P92 Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> - A Laboratory and Field Study
View
PDF
for content titled, Influence of Aluminum Diffusion Layer on T/P92 Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> - A Laboratory and Field Study
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 420-427, October 25–28, 2004,
... Abstract The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities...
Abstract
View Papertitled, Dependence of High-Temperature Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> on the Stability of the Chromium Sulfide in High-Chromium Heat-<span class="search-highlight">Resistant</span> Steels
View
PDF
for content titled, Dependence of High-Temperature Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> on the Stability of the Chromium Sulfide in High-Chromium Heat-<span class="search-highlight">Resistant</span> Steels
The presence of sulfur at an impurity level in heat resistant steels could improve remarkably the steam oxidation resistance. As is well known, sulfur tends to form sulfides, in particular, chromium sulfides when the steel contains chromium. Therefore, there are two possibilities of sulfur states in the steel. One is in atomic sulfur state as a solid solution, and the other is in sulfide state as a precipitate. However, it still remains unclear which sulfur state contributes largely to the improvement of the steam oxidation resistance of the steels. In order to elucidate the sulfur state operated more effectively in improving the oxidation resistance, the steam oxidation resistance was investigated with high chromium ferritic steels, Fe-10mass%Cr-0.08mass%C-(0~0.015)mass%S, with controlling the sulfur states in them by proper heat treatments. From a series of experiments, it was found that the sulfide state played a more important role in improving the steam oxidation resistance than the atomic sulfur state. Furthermore, this sulfur effect worked significantly in the steam oxidation test performed at the temperatures above 873K which corresponded to the temperature for the chromium sulfide to dissolve and instead for the chromium oxide to form in the steels. This result indicates that the beneficial effect of sulfur in improving the steam oxidation resistance is related closely to the sulfide stability against the oxide in the steels.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 791-802, October 22–25, 2013,
... Abstract To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters...
Abstract
View Papertitled, Evaluation of Supercritical <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Boiler Tube Materials
View
PDF
for content titled, Evaluation of Supercritical <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> of Boiler Tube Materials
To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters and reheaters. Apart from the chemical composition of the material, surface condition is a major factor affecting the oxidation resistance in steam and supercritical water. In this paper, stainless boiler steels (UNS S34710, S31035, S31042, and S30942) are investigated for oxidation resistance in flowing supercritical water. Tests were conducted in an autoclave environment (250 bar, with 125 ppb dissolved oxygen and a pH of 7) at 625°C, 650°C and 675°C for up to 1000 h. Materials were tested with as-delivered, shot peened, milled or spark eroded and ground surface finish. The results show a strong influence of surface finish at the early stages of oxidation. Oxides formed on cold worked surfaces were more adherent and much thinner than on a spark eroded and ground surface. This effect was stronger than the influence of temperature or alloy composition within the tested ranges.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 803-814, October 22–25, 2013,
... Abstract Because of the problems experienced with steam-side oxide scale exfoliation in commercial power plants, there has been increased interest in understanding the steam oxidation resistance of 300- series stainless steels such as 347H and 304H. Model alloys were used in an attempt...
Abstract
View Papertitled, Effects of Alloy Composition and Surface Engineering on Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span>
View
PDF
for content titled, Effects of Alloy Composition and Surface Engineering on Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span>
Because of the problems experienced with steam-side oxide scale exfoliation in commercial power plants, there has been increased interest in understanding the steam oxidation resistance of 300- series stainless steels such as 347H and 304H. Model alloys were used in an attempt to understand the effect of varying Ni (9-12%) and Cr (16-20%) on steam oxidation resistance at 650°C. However, the model alloys generally showed superior oxidation resistance than commercial alloys of similar composition. Several surface engineering solutions also were investigated. The commercially favored solution is shot peening. Laboratory steam testing at 650°C found that annealing temperatures of ≥850°C eliminated the benefit of shot peening and a correlation was observed with starting hardness in the peened region. This effect of annealing has implications for the fabrication of shot peened tubing. Another route to improving oxidation resistance is the use of oxidation resistant diffusion coatings, which can be deposited inexpensively by a vapor slurry process. Uniform coatings were deposited on short tube sections and annealed at 1065°C to retain good 650°C creep properties. The coating was thicker than has been investigated in laboratory processes resulting in increased brittleness when the coating was assessed using 4-point bending.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 171-182, February 25–28, 2025,
... microstructure nickel-chromium-aluminum alloys nitridation scanning electron microscopy steam oxidation resistance Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistance</span> in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
This study investigates the steam oxidation behavior of Alloy 699 XA, a material containing 30 wt.% chromium and 2 wt.% aluminum that forms protective oxide scales in low-oxygen conditions. The research compares four variants of the alloy: conventional bulk material, a laser powder bed fusion (LPBF) additively manufactured version, and two modified compositions. The modified versions include MAC-UN-699-G, optimized for gamma-prime precipitation, and MAC-ISIN-699, which underwent in-situ internal nitridation during powder atomization. All variants were subjected to steam oxidation testing at 750°C and 950°C for up to 5000 hours, with interim analyses conducted at 2000 hours. The post-exposure analysis employed X-ray diffraction (XRD) to identify phase development and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) to examine surface morphology, cross-sectional microstructure, and chemical composition. This study addresses a significant knowledge gap regarding the steam oxidation behavior of 699 XA alloy, particularly in its additively manufactured state.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 877-887, October 11–14, 2016,
... Abstract A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep...
Abstract
View Papertitled, Tenaris New High Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span>, Creep Strength Enhanced Ferritic Steel Thor 115
View
PDF
for content titled, Tenaris New High Steam <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span>, Creep Strength Enhanced Ferritic Steel Thor 115
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASTM grade 91, above 600 °C, particularly related to scale growth and liftoff. After laboratory development, Thor was successfully validated at the industrial level. Several heats up to 80 metric tons were cast at the steel shop, hot rolled to tubes of various dimensions, and heat treated. Trial heats underwent extensive characterization, including deep microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 202-216, October 25–28, 2004,
...-oxidation treatment in argon, significantly improving the oxidation resistance in steam at 650°C. alloy design boilers chromium carbides creep resistance creep strength creep test grain boundaries martensitic microstructure martensitic steel oxidation resistance httpsdoi.org/10.31399...
Abstract
View Papertitled, Alloy Design of Creep and <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span> 9Cr Steels for Thick Section Boiler Components Operating at 650°C
View
PDF
for content titled, Alloy Design of Creep and <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span> 9Cr Steels for Thick Section Boiler Components Operating at 650°C
To enhance long-term creep strength at 650°C, stabilization of the lath martensitic microstructure near prior austenite grain boundaries has been investigated for a 9Cr-3W-3Co-0.2V-0.05Nb steel. This was achieved by adding boron to stabilize M 23 C 6 carbides and dispersing fine MX nitrides. Creep tests were conducted at 650°C for up to approximately 3 × 10 4 hours. Adding a large amount of boron exceeding 0.01%, combined with minimized nitrogen, effectively stabilized the martensitic microstructure and improved long-term creep strength. The amount of available boron, free from boron nitrides and tungsten borides, is crucial for enhancing long-term creep strength. Reducing the carbon concentration below 0.02% led to a dispersion of nano-sized MX nitride particles along boundaries and in the matrix, resulting in excellent creep strength at 650°C. A critical issue for the 9Cr steel strengthened by MX nitrides is the formation of Z-phase, which degrades long-term creep strength. Excess nitrogen additions of 0.07 and 0.1% promoted Z-phase formation during creep. The formation of a protective Cr-rich oxide scale was achieved through a combination of Si addition and pre-oxidation treatment in argon, significantly improving the oxidation resistance in steam at 650°C.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 839-849, August 31–September 3, 2010,
... Abstract Diffusion aluminide coatings have been evaluated as a strategy for improving the oxidation resistance of austenitic and ferritic-martensitic (FM) steels, particularly in the presence of steam or water vapor. The objective was to evaluate the strengths and weaknesses of these coatings...
Abstract
View Papertitled, Performance of Al-Rich <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span> Coatings for Fe-Base Alloys
View
PDF
for content titled, Performance of Al-Rich <span class="search-highlight">Oxidation</span> <span class="search-highlight">Resistant</span> Coatings for Fe-Base Alloys
Diffusion aluminide coatings have been evaluated as a strategy for improving the oxidation resistance of austenitic and ferritic-martensitic (FM) steels, particularly in the presence of steam or water vapor. The objective was to evaluate the strengths and weaknesses of these coatings and quantify their performance and lifetime. Long-term diffusion and oxidation experiments were conducted to study the behavior of various model diffusion coatings and produce a better data set for lifetime predictions. The key findings are that (1) thin coatings (<50μm) with relatively low Al contents appear to be more effective because they avoid high thermal expansion intermetallic phases and have less strain energy to nucleate a crack; and (2) the low Al reservoir in a thin coating and the loss of Al due to interdiffusion are not problematic because the low service temperatures of FM steels (<600°C) and, for austenitic steels at higher temperatures, the phase boundary between the ferritic coating-austenitic substrate inhibits Al interdiffusion. Unresolved issues center on the effect of the coating on the mechanical properties of the substrate including the reaction of N in the alloy with Al.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 327-335, October 21–24, 2019,
... Abstract High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high...
Abstract
View Papertitled, The Effect of Niobium Addition on Steam <span class="search-highlight">Oxidation</span> Behavior of Ferritic Heat <span class="search-highlight">Resistant</span> Steels at 923 K
View
PDF
for content titled, The Effect of Niobium Addition on Steam <span class="search-highlight">Oxidation</span> Behavior of Ferritic Heat <span class="search-highlight">Resistant</span> Steels at 923 K
High Cr ferritic steels have been developed for the large components of fossil power plants due to their excellent creep resistance, low thermal expansion, and good oxidation resistance. Development works to improve the operating temperature of these steels mainly focused on the high mechanical properties such as solid solution strengthening and precipitation hardening. However, the knowledge of the correlation between Laves phase precipitation and oxidation behavior has not clarified yet on 9Cr ferritic steels. This research will be focused on the effect of precipitation of Laves phase on steam oxidation behavior of Fe-9Cr alloy at 923 K. Niobium was chosen as the third element to the Fe- 9Cr binary system. Steam oxidation test of Fe-9Cr (mass%) alloy and Fe-9Cr-2Nb (mass%) alloy were carried out at 923 K in Ar-15%H 2 O mixture for up to 172.8 ks. X-ray diffraction confirms the oxide mainly consist of wüstite on the Fe-9Cr in the initial stage while on Nb added samples magnetite was dominated. The results show that the Fe-9Cr- 2Nb alloy has a slower oxidation rate than the Fe-9Cr alloy after oxidized for 172.8 ks
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 282-293, October 21–24, 2019,
... of these creep strength enhanced 9-12%Cr steels is limited to around 630°C or 650°C at maximum in terms of high temperature strength and oxidation resistance. Consequently the appearance of ferritic steels standing up to higher temperature of around 700°C to substitute of high strength austenitic steels...
Abstract
View Papertitled, High Temperature <span class="search-highlight">Oxidation</span> Behavior of High Nitrogen Ferritic Steels
View
PDF
for content titled, High Temperature <span class="search-highlight">Oxidation</span> Behavior of High Nitrogen Ferritic Steels
For last half century the development of creep strength enhanced ferritic steels has been continued and presently ASME grades 91, 92 and 122 extremely stronger than conventional low alloy steels have extensively been used worldwide in high efficient power plants. However the use of these creep strength enhanced 9-12%Cr steels is limited to around 630°C or 650°C at maximum in terms of high temperature strength and oxidation resistance. Consequently the appearance of ferritic steels standing up to higher temperature of around 700°C to substitute of high strength austenitic steels is strongly desired. Under the state, the addition of high nitrogen to ferritic steels is attracting considerable attention because of improving high temperature strength and oxidation resistance of them. This work was done to evaluate the oxidation resistance of high nitrogen steels and to investigate the effect nitrogen and microstructure on oxidation resistance using 9-15%Cr steels with about 0.3% nitrogen manufactured by means of Pressurized Electro- Slag Remelting (PESR) method in comparison with ASME grades 91 and 122. As a result, high nitrogen ferritic steels showed excellent oxidation resistance comparing with nitrogen-free steels and ASME grades 91 and 122. The oxidation resistance of 9%Cr ferritic steels depends on the nitrogen content in the each steel. That is, the weight gain decreases with an increase in nitrogen content. Moreover, the oxide scale of high nitrogen steel contained a high concentration of Cr. It is conjectured that, in high temperature oxidation, nitrogen plays a key role in promoting the formation of the oxide scale which has high concentration of Cr, inhibiting oxidation from proceeding. And also it was found that the oxidation resistance of the high nitrogen steels does not depend greatly on Cr content but on their microstructure. The oxidation resistance of high nitrogen ferritic heat-resistant steels increased as the fraction of martensite structure increased. These results indicate for high nitrogen steels Cr diffusion along grain boundaries is further promoted resulting in the formation of protective oxide scale having high Cr concentration. Furthermore as new findings it was confirmed that the Cr diffusion in substrate of steels to form Cr concentrated oxide scale on the metal surface is accelerated by nitrogen while suppressed by carbon in matrix of steel.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 823-831, October 11–14, 2016,
... Abstract For higher efficiency and competitive overall performance, it would be an advantage to be able to safely exceed the highest operational values, currently up to about 600-620°C/25-30 MPa in supercritical (SC) boiler plants. Under such operating conditions the oxidation resistance in SC...
Abstract
View Papertitled, Evaluating The Effect of Cold Work on Supercritical <span class="search-highlight">Oxidation</span> of Boiler Tube Materials
View
PDF
for content titled, Evaluating The Effect of Cold Work on Supercritical <span class="search-highlight">Oxidation</span> of Boiler Tube Materials
For higher efficiency and competitive overall performance, it would be an advantage to be able to safely exceed the highest operational values, currently up to about 600-620°C/25-30 MPa in supercritical (SC) boiler plants. Under such operating conditions the oxidation resistance in SC water tends to limit the potential for further improvement of efficiency. The way to increase the oxidation resistance of traditional austenitic boiler tubes e.g. TP 347H is to do additional cold work on the boiler tube inner surface. In the current paper the effect of cold work on the oxidation resistance of TP347H and TP347HFG has been evaluated by shot peened samples with different parameters and subjecting those samples to supercritical oxidation exposure. The results show an improvement in the oxidation resistance of the alloys, especially in the large grained alloy TP347H. Also the uniformity of the deformation layer was seen to have an influence on the oxidation resistance, since the oxide nodules start to grow at locations with the thinnest or no deformation layer.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 815-820, October 22–25, 2013,
... Abstract Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution treated sample, depending on the grain of the steel. Although thin duplex scale with the Cr-rich layer was formed in the early stage, most of the surface was covered with thick duplex scale which consists of magnetite as the outer scale and the mixture of Fe-Cr spinel and metallic Ni as the inner scale. On the other hand, surface morphology of the oxide scale was independent of grain of the steel and thick duplex scale as seen on the solution treated sample was formed on the pre-aged sample. Steam oxidation resistance of the steel is almost the same as that of commercial austenitic steels and it can be improved by the surface treatment such as shot peening. Based on the results, this steel has both enough creep rupture strength and good steam oxidation resistance for A-USC power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 803-811, October 21–24, 2019,
... Abstract Ti alloys are used as compressor blades and disks in jet engines due to their high specific strength and good oxidation resistance at operation temperature. However, Ti alloys cannot be used above 600 °C because creep properties and oxidation resistance deteriorate. To overcome...
Abstract
View Papertitled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
View
PDF
for content titled, Creep Behavior of Near-α Ti-Al-Nb-Zr Alloys
Ti alloys are used as compressor blades and disks in jet engines due to their high specific strength and good oxidation resistance at operation temperature. However, Ti alloys cannot be used above 600 °C because creep properties and oxidation resistance deteriorate. To overcome the above problems, the effect of alloying element on oxidation resistance was investigated and it was found that Sn deteriorated oxidation resistance and Nb improved oxidation resistance. Then, we have attempted to design new Ti alloys without Sn, but including Nb because Nb improved oxidation resistance. To expect solid-solution hardening, Zr was also added to the alloys. In this study, the creep behavior of Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si alloys was investigated. The creep test was performed at temperature range between 550 and 650 °C and stress range between 137 and 240 MPa. The stress exponent and the activation energy for creep were analyzed using an Arrhenius equation. The stress exponent was 5.9 and 3.4, and the activation energy was 290 and 272 kJ/mol for Ti-10Al-2Nb-2Zr and Ti-10Al-2Nb-2Zr-0.5Si, respectively. This indicates the creep deformation mechanism is dislocation (high-temperature power law) creep governed by lattice diffusion.
Proceedings Papers
Effect of Argon Gas Pre-Oxidation Treatment on the Oxidation Behavior of NIMS High-Strength Steels
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 463-471, October 25–28, 2004,
... to enhance the steam oxidation resistance of these 9Cr steels strengthened by boron and fine MX nitrides. A combination of 0.7% Si, 40-60 ppm S, and pre-oxidation treatment was applied. Steam oxidation tests were conducted at 923K for up to 4000h. Pre-oxidation treatment in argon gas at 973K for 50h...
Abstract
View Papertitled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
View
PDF
for content titled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
For high-strength steels developed at the National Institute for Materials Science (NIMS) in Japan, a dispersion of nano-sized MX nitride particles along boundaries and in the matrix is achieved by reducing carbon concentration below 0.02%. This structure results in excellent creep strength at 923K, approximately two orders of magnitude longer rupture time than P92. Additionally, adding a large amount of boron exceeding 0.01% combined with minimized nitrogen effectively improves creep rupture strength by stabilizing the martensitic microstructure during creep. Efforts have been made to enhance the steam oxidation resistance of these 9Cr steels strengthened by boron and fine MX nitrides. A combination of 0.7% Si, 40-60 ppm S, and pre-oxidation treatment was applied. Steam oxidation tests were conducted at 923K for up to 4000h. Pre-oxidation treatment in argon gas at 973K for 50h significantly improved oxidation resistance in steam at 923K by forming a protective Cr-rich oxide layer. The pre-oxidized steels exhibited much lower mass gain in steam at 923K than Mod.9Cr-1Mo steel at 873K, and lower than T91 at 873K after 1000h. After 4000h, their mass gain was about zero, much lower than P91 at 873K and 923K. SEM/EDS analysis and low mass gain suggest a protective Cr-rich oxide scale formed on the pre-oxidized steel surface, exhibiting excellent oxidation resistance in steam at 923K.
1