Skip Nav Destination
Close Modal
Search Results for
oxidation analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 284
Search Results for oxidation analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 348-359, October 21–24, 2019,
... 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out. boiler tubing martensitic stainless steel MarBN steels microstructural...
Abstract
View Papertitled, Microstructural <span class="search-highlight">Analysis</span> of Service Exposed IBN1 MarBN Steel Boiler Tubing
View
PDF
for content titled, Microstructural <span class="search-highlight">Analysis</span> of Service Exposed IBN1 MarBN Steel Boiler Tubing
Extensive research and development has been undertaken in the UK on MarBN steels. These were first proposed by Professor Fujio Abe from NIMS in Japan. Within the UK, progress has been made towards commercialisation of MarBN-type steel through a series of Government funded industrial collaborative projects (IMPACT, IMPEL, INMAP and IMPULSE). As part of the IMPACT project, which was led by Uniper Technologies, boiler tubes were manufactured from the MarBN steel developed within the project, IBN1, and installed on the reheater drums of Units 2 and 3 of Ratcliffe-on-Soar Power Station. The trial tubes were constructed with small sections of Grade 91 tubing on either side of the IBN1 to allow direct comparison after the service exposure. This is the world’s first use of a MarBN steel on a full-scale operational power plant. In September 2018 the first tube was removed having accumulated 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out.
Proceedings Papers
Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Free
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 821-838, August 31–September 3, 2010,
... tests were carried out on a specially designed test rig at elevated temperatures. The steam oxidation analysis combined with the abradability mapping results provide a potentially improved seal coating system that can be integrated into existing steam turbine designs for various seal locations...
Abstract
View Papertitled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
View
PDF
for content titled, Abradable Coatings Development and Validation Testing for Application on Steam Turbine Components
Abradability, erosion and steam oxidation tests were conducted on commercial and experimental abradable coatings in order to evaluate their suitability for applications in steam turbines. Steam oxidation tests were carried out on free-standing top coat samples as well as coating systems consisting of a bond and an abradable top coat. Mapping of the abradability performance under widely varied seal strip incursion conditions was carried out for a candidate abradable coating that showed good steam oxidation performance in combination with good erosion resistance. The abradability tests were carried out on a specially designed test rig at elevated temperatures. The steam oxidation analysis combined with the abradability mapping results provide a potentially improved seal coating system that can be integrated into existing steam turbine designs for various seal locations. Such design integration is easily achieved and can be applied to steam turbine components that are sprayed in dedicated coating shops or even at the site of final turbine assembly.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1215-1223, October 21–24, 2019,
... mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended. exfoliation fatigue resistance nitriding root cause analysis steam oxidation resistance steam turbines steam valves ultra supercritical power plants Joint EPRI 123HiMAT...
Abstract
View Papertitled, <span class="search-highlight">Analysis</span> of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
View
PDF
for content titled, <span class="search-highlight">Analysis</span> of Steam Valve Jam of Turbine Served for 8541 Hours at 600 °C
Both of high pressure main throttle valves and one governing valves were jammed during the cold start of steam turbine served for 8541 hours at 600 °C in an ultra supercritical power plant. Other potential failure mechanisms were ruled out through a process of elimination, such as low oil pressure of digital electro-hydraulic control system, jam of orifice in the hydraulic servo-motor, and the severe bending of valve stem. The root cause was found to be oxide scales plugged in clearances between the valve disc and its bushing. These oxide scales are about 100~200 μm in thickness while the valve clearances are about 210~460 μm at room temperature. These oxide scales are mainly composed of Fe 3 O 4 and Fe 2 O 3 with other tiny phases. Both of valve disc and its bushing were treated with surface nitriding in order to improve its fatigue resistance, which unexpectedly reduces the steam oxidation resistance. On the other hand, significant fluctuation of valve inner wall temperature during operation accelerated the exfoliation of oxide scales, and the absence of full stroke test induced the gradual accumulation of scales in valve clearances. In light of the steam valve jam mechanism in the present case, treatments in aspects of operation and resistance to steam oxidation are recommended.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 243-253, August 31–September 3, 2010,
... standard metallographic techniques. Alloy and oxide chemical composition was characterized using electron microprobe analysis. Waterside scale thickness was measured as a function of location. Agreement between the measured and predicted values based on likely rate constants was poor. chemical...
Abstract
View Papertitled, Characterization of Reaction Products from Field Exposed Tubes
View
PDF
for content titled, Characterization of Reaction Products from Field Exposed Tubes
In order to assist in developing mechanistic and computational models for understanding the performance of current Fe-base waterwall tubing, characterization has been performed on three field-exposed low alloy steel waterwall tubes. The waterside oxide thickness was characterized using standard metallographic techniques. Alloy and oxide chemical composition was characterized using electron microprobe analysis. Waterside scale thickness was measured as a function of location. Agreement between the measured and predicted values based on likely rate constants was poor.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... into a commercially operated heat recovery steam generator (HRSG), starting in May 2015; the material heat analysis is available in Table 1. The steam oxidation resistance of Thor 115 is evaluated based on samples cut from the boiler; in addition, the results are compared with steam oxidation tests performed at Oak...
Abstract
View Papertitled, Microstructural Evolution and Steam <span class="search-highlight">Oxidation</span> Resistance of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam <span class="search-highlight">Oxidation</span> Resistance of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
... analysis software can simulate the effects of oxide granules on magnetic induction under the action of a magnetic field. The simulation conditions are set according to the actual experimental parameters. The excitation source is set to the square winding coils with 60 turns of coils and the energization...
Abstract
View Papertitled, Study on the Magnetic Nondestructive Testing Technology for <span class="search-highlight">Oxide</span> Scales
View
PDF
for content titled, Study on the Magnetic Nondestructive Testing Technology for <span class="search-highlight">Oxide</span> Scales
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 600-609, October 11–14, 2016,
..., and have been put into operation for a period of about 100,000 hours and suffered from burst leakage more than once. Relevant analysis results indicate that these tubes have been in overheating service for a long time due to their severe material aging and relatively thick oxidation scales on inner...
Abstract
View Papertitled, Life Diagnosis and Extension of a High Temperature Heating Surface
View
PDF
for content titled, Life Diagnosis and Extension of a High Temperature Heating Surface
Through inner wall oxidation scale thickness measurement, sampling tests and installation of wall temperature measuring device in the boiler, the equivalent wall temperature and its distribution of secondary high temperature reheater tube were estimated and verified, and the temperature field distribution of tube platen which is of single peak distribution in the direction vertical to tube platen and an apparent lower temperature distribution covered by the smoke shield at the side of boiler wall were both obtained. For the middlemost 10CrMo910, the wall temperature of individual tube was getting close to 600°C. Afterwards material state and residual creep life of tube platen were estimated and calculated. The results of estimate and calculation show that the tube platen in the middle is not suitable for further service due to its degraded material states and lower antioxidant ability. Thus with consideration of distribution characteristics of temperature field, parts of tube platens in the middle are proposed to be replaced with T91 tubes. Furthermore, to avoid onsite heat treatment, 10CrMo910 tube covered by the smoke shield in the boiler was reserved, and a small piece of 10CrMo910 tube was welded at the inlet and outlet ends respectively in the manufactory.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 976-980, October 21–24, 2019,
... (GD-OES) analysis revealed that SLM specimens contain a higher content of Ti in chromia compared with EBM specimens. Process-induced supersaturation in SLM specimens might lead to a relatively high concentration of Ti in the chromia, which may affect the grain morphology of oxide scale in the SLM...
Abstract
View Papertitled, <span class="search-highlight">Oxidation</span> Behavior of Alloy 718 Built Up by Selective Laser Melting
View
PDF
for content titled, <span class="search-highlight">Oxidation</span> Behavior of Alloy 718 Built Up by Selective Laser Melting
The current work presented a study of isothermal-oxidation behavior of the additive manufactured (AM) Alloy718 in air at 800°C. The oxidation behavior of Alloy718 specimens produced by selective laser melting (SLM) and electron beam melting (EBM) process were comparatively examined. No significant differences were observed in oxidation kinetics while different microstructures of the oxide scale were found. Coarse and columnar chromia grains developed on SLM specimens, whereas the chromia scale of EBM specimens consisted of extremely fine grains. Glow Discharge Optical Emission Spectrometry (GD-OES) analysis revealed that SLM specimens contain a higher content of Ti in chromia compared with EBM specimens. Process-induced supersaturation in SLM specimens might lead to a relatively high concentration of Ti in the chromia, which may affect the grain morphology of oxide scale in the SLM specimen.
Proceedings Papers
Effect of Argon Gas Pre-Oxidation Treatment on the Oxidation Behavior of NIMS High-Strength Steels
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 463-471, October 25–28, 2004,
... P91 at 873K and 923K. SEM/EDS analysis and low mass gain suggest a protective Cr-rich oxide scale formed on the pre-oxidized steel surface, exhibiting excellent oxidation resistance in steam at 923K. creep rupture strength martensitic microstructure martensitic steel oxidation resistance pre...
Abstract
View Papertitled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
View
PDF
for content titled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
For high-strength steels developed at the National Institute for Materials Science (NIMS) in Japan, a dispersion of nano-sized MX nitride particles along boundaries and in the matrix is achieved by reducing carbon concentration below 0.02%. This structure results in excellent creep strength at 923K, approximately two orders of magnitude longer rupture time than P92. Additionally, adding a large amount of boron exceeding 0.01% combined with minimized nitrogen effectively improves creep rupture strength by stabilizing the martensitic microstructure during creep. Efforts have been made to enhance the steam oxidation resistance of these 9Cr steels strengthened by boron and fine MX nitrides. A combination of 0.7% Si, 40-60 ppm S, and pre-oxidation treatment was applied. Steam oxidation tests were conducted at 923K for up to 4000h. Pre-oxidation treatment in argon gas at 973K for 50h significantly improved oxidation resistance in steam at 923K by forming a protective Cr-rich oxide layer. The pre-oxidized steels exhibited much lower mass gain in steam at 923K than Mod.9Cr-1Mo steel at 873K, and lower than T91 at 873K after 1000h. After 4000h, their mass gain was about zero, much lower than P91 at 873K and 923K. SEM/EDS analysis and low mass gain suggest a protective Cr-rich oxide scale formed on the pre-oxidized steel surface, exhibiting excellent oxidation resistance in steam at 923K.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 623-637, October 25–28, 2004,
.... Therefore, Ni-based superalloys were tailored to reduce their coefficients to the level of 12Cr steels. Regression analysis of commercial superalloys proves that Ti, Mo and Al decrease the coefficient quantitatively in this order, while Cr, used to secure oxidation resistance, increases it so significantly...
Abstract
View Papertitled, Development of Wrought Ni-Based Superalloy with Low Thermal Expansion for 700C Steam Turbines
View
PDF
for content titled, Development of Wrought Ni-Based Superalloy with Low Thermal Expansion for 700C Steam Turbines
Advanced 700C class steam turbines require austenitic alloys instead of conventional ferritic heat-resistant steels which have poor creep strength and oxidation resistance above 650C. Austenitic alloys, however, possess a higher thermal expansion coefficient than ferritic 12Cr steels. Therefore, Ni-based superalloys were tailored to reduce their coefficients to the level of 12Cr steels. Regression analysis of commercial superalloys proves that Ti, Mo and Al decrease the coefficient quantitatively in this order, while Cr, used to secure oxidation resistance, increases it so significantly that Cr should be limited to 12wt%. The newly designed Ni-18Mo-12Cr-l.lTi-0.9Al alloy is strengthened by gamma-prime [Ni 3 (Al,Ti)] and also Laves [Ni 2 (Mo,Cr)] phase precipitates. It bears an RT/700C mean thermal expansion coefficient equivalent to that of 12Cr steels and far lower than that of low-alloyed heat resistant steels. Its creep rupture life at 700C and steam oxidation resistance are equivalent to those of a current turbine alloy, Refractaloy 26, and its tensile strength at RT to 700C surpasses that of Refractaloy 26. The new alloy was trial produced using the VIM-ESR melting process and one ton ingots were successfully forged into round bars for bolts without any defects. The bolts were tested in an actual steam turbine for one year. Dye penetrant tests detected no damage. The developed alloy will be suitable for 700C class USC power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... Abstract During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks...
Abstract
View Papertitled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
View
PDF
for content titled, Environmental Assisted Cracking of Alloy T24 in Oxygenated High-Temperature Water
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 813-822, October 11–14, 2016,
... steels such as 347H and 304H. Analysis of field-exposed tubes has provided information on the oxidation reaction products but relatively few specimens are available and there is limited information about the kinetics. Specimens have included tube sections with a shot peened surface, a treatment...
Abstract
View Papertitled, Field and Laboratory Observations on the Steam <span class="search-highlight">Oxidation</span> Behavior of Creep Strength Enhanced Ferritic Steels and Austenitic Stainless Steels
View
PDF
for content titled, Field and Laboratory Observations on the Steam <span class="search-highlight">Oxidation</span> Behavior of Creep Strength Enhanced Ferritic Steels and Austenitic Stainless Steels
Because of the problems experienced with steam-side oxidation in commercial power plants, there has been continuing interest in better understanding the steam oxidation behavior of creep strength enhanced ferritic steels such as grades 23, 24 and 91 as well as 300-series stainless steels such as 347H and 304H. Analysis of field-exposed tubes has provided information on the oxidation reaction products but relatively few specimens are available and there is limited information about the kinetics. Specimens have included tube sections with a shot peened surface, a treatment that is now widely used for austenitic boiler tubes. To complement this information, additional laboratory studies have been conducted in 1bar steam at 600°-650°C on coupons cut from conventional and shot-peened tubing. Exposures of 1-15 kh provide some information on the steam oxidation kinetics for the various alloys classes. While shot-peened type 304H retained its beneficial effect on oxidation resistance past 10,000 h at 600° and 625°C, the benefit appeared to decline after similar exposures at 650°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 371-387, October 25–28, 2004,
... studies were combined with data obtained from a number of analysis techniques, such as optical metallography, SEM/EDX and LRS. Different mechanisms of oxidation were observed for the various steels in different temperature regimes, exposure times and exposure conditions. The cracking and spallation...
Abstract
View Papertitled, <span class="search-highlight">Oxidation</span> Behavior of Ferritic and Austenitic Steels in Simulated Steam Environments
View
PDF
for content titled, <span class="search-highlight">Oxidation</span> Behavior of Ferritic and Austenitic Steels in Simulated Steam Environments
The oxidation resistance of 9-12% chromium steels in steam-containing environments simulating the service conditions of steam power plant has been investigated for exposure times ranging from 1 h up to 10 000 h. For characterizing the oxidation behavior, the results of gravimetric studies were combined with data obtained from a number of analysis techniques, such as optical metallography, SEM/EDX and LRS. Different mechanisms of oxidation were observed for the various steels in different temperature regimes, exposure times and exposure conditions. The cracking and spallation of scales was correlated with the type, morphology and growth of pores and voids in the scale and could be influenced by the steel microstructure. For some steels, the steam oxidation resistance increased with increasing exposure temperature. The oxidation rates only slightly depend on the exact water vapor content in the test gas but can be strongly affected by the gas flow rates.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1093-1103, October 22–25, 2013,
... and morphologies of oxide scales formed after 5000 h exposure steels in simulated steam environments as function of temperature were characterized by light optical metallography and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). creep properties creep testing energy...
Abstract
View Papertitled, Long-Term Evolution of Microstructure in VM12-SHC
View
PDF
for content titled, Long-Term Evolution of Microstructure in VM12-SHC
The recently developed 12%Cr steel VM12-SHC is characterized by very good creep properties at temperatures up to 620°C. This new material development exhibits an excellent oxidation resistance in steam atmospheres at the typical application temperature but also at temperatures up to 650°C. In comparison to the existing 9% Cr grades T/P91 and T/P92, VM12-SHC steel opens due to its excellent oxidation behavior, new possibilities for its application as a heat exchanger boiler component. It was found that outside its application temperature range VM12-SHC also shows, as all 9-12%Cr steels, the appearance of the so called Z-phase. This effect was investigated to understand its influence on creep properties of this class of ferritic/martensitic steels aiming at controlling the microstructure stabilities for future grade developments. Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected crept specimens have been investigated using light optical microscopy, SEM with EDX and TEM. In this study, the oxidation behavior of a number of typical martensitic 9-12%Cr steels was compared with the newly developed 12% Cr steel VM12-SHC. The compositions and morphologies of oxide scales formed after 5000 h exposure steels in simulated steam environments as function of temperature were characterized by light optical metallography and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX).
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1417-1421, October 22–25, 2013,
... analysis revealed the formation of Fe-rich nodules with an internal Cr-carbide layer beneath them. Notably, the number of nodules decreased with increasing oxygen content but remained independent of the oxidation time. To explain these observations, the authors propose that “intrinsic” defects within...
Abstract
View Papertitled, High Temperature <span class="search-highlight">Oxidation</span> Behavior of Fe-9Cr Steel In CO 2 -O 2 Gas Mixture
View
PDF
for content titled, High Temperature <span class="search-highlight">Oxidation</span> Behavior of Fe-9Cr Steel In CO 2 -O 2 Gas Mixture
The high-temperature oxidation of Fe-9Cr-1Mo steel in a CO 2 environment, with varying oxygen content (0.6-3%), was investigated at 700°C. While the steel heavily oxidized in pure CO 2 , the oxidation mass gain decreased significantly with increasing oxygen content. Microscopic analysis revealed the formation of Fe-rich nodules with an internal Cr-carbide layer beneath them. Notably, the number of nodules decreased with increasing oxygen content but remained independent of the oxidation time. To explain these observations, the authors propose that “intrinsic” defects within the initially formed protective Cr 2 O 3 scale facilitated gas permeation. This mechanism is believed to be responsible for the observed dependence of nodule formation on the oxygen content in the gas mixtures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 171-182, February 25–28, 2025,
... Abstract This study investigates the steam oxidation behavior of Alloy 699 XA, a material containing 30 wt.% chromium and 2 wt.% aluminum that forms protective oxide scales in low-oxygen conditions. The research compares four variants of the alloy: conventional bulk material, a laser powder bed...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> Resistance in a Long Term Exposure of the Modified Laser Powder Bed Fusion 699XA Alloy at High Temperature
This study investigates the steam oxidation behavior of Alloy 699 XA, a material containing 30 wt.% chromium and 2 wt.% aluminum that forms protective oxide scales in low-oxygen conditions. The research compares four variants of the alloy: conventional bulk material, a laser powder bed fusion (LPBF) additively manufactured version, and two modified compositions. The modified versions include MAC-UN-699-G, optimized for gamma-prime precipitation, and MAC-ISIN-699, which underwent in-situ internal nitridation during powder atomization. All variants were subjected to steam oxidation testing at 750°C and 950°C for up to 5000 hours, with interim analyses conducted at 2000 hours. The post-exposure analysis employed X-ray diffraction (XRD) to identify phase development and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) to examine surface morphology, cross-sectional microstructure, and chemical composition. This study addresses a significant knowledge gap regarding the steam oxidation behavior of 699 XA alloy, particularly in its additively manufactured state.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 554-570, August 31–September 3, 2010,
... systems and sensor setups, high-speed data acquisition, and frequency analysis (FFT). Further development on crept and welded samples is recommended to enhance NDE practices for in-service T91 steel conditions. chemical composition chromium-molybdenum steel cold working heat treatment hot...
Abstract
View Papertitled, Nondestructive Evaluation Methods of Microstructure in Power Plant Steel Grades
View
PDF
for content titled, Nondestructive Evaluation Methods of Microstructure in Power Plant Steel Grades
Critical sections of steam plants and heat-recovery steam generators require materials with enhanced properties such as 9Cr-1Mo steel. Ensuring compliance with specifications for heat treatment, chemical composition, contamination limits, and joint design is crucial to prevent premature failures. This study describes the development of a user-friendly, multi-property nondestructive sensor arrangement to qualify heat-treated 9Cr-1Mo steel. Experimental results demonstrate that correlations between thermal heat treatment and electronic, magnetic, and elastic measurements can determine if T91 steel achieves the necessary microstructure and properties for service. Additionally, rejected parts can be assessed for microstructural issues causing unacceptable properties. The techniques utilize a common electronic setup with different sensors, requiring calibration for specific NDE systems and sensor setups, high-speed data acquisition, and frequency analysis (FFT). Further development on crept and welded samples is recommended to enhance NDE practices for in-service T91 steel conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... Abstract Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld...
Abstract
View Papertitled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of Fossil Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 990-997, October 21–24, 2019,
... loads. Higher efficiency demands steels with excellent steam oxidation resistance, favoring ferritic steels for cycling operation due to their limited thermal expansion. This paper presents a study modeling a combined cycle power plant using GE 9HA0.2 GT technology. The analysis compares different...
Abstract
View Papertitled, Benchmarking Combined Cycle Power Plant Designs Employing 9-12%Cr CSEF Steels in Environments Prone to Steam <span class="search-highlight">Oxidation</span>
View
PDF
for content titled, Benchmarking Combined Cycle Power Plant Designs Employing 9-12%Cr CSEF Steels in Environments Prone to Steam <span class="search-highlight">Oxidation</span>
To stay competitive in today’s dynamic energy market, traditional thermal power plants must enhance efficiency, operate flexibly, and reduce greenhouse gas emissions. This creates challenges for material industries to provide solutions for harsh operating conditions and fluctuating loads. Higher efficiency demands steels with excellent steam oxidation resistance, favoring ferritic steels for cycling operation due to their limited thermal expansion. This paper presents a study modeling a combined cycle power plant using GE 9HA0.2 GT technology. The analysis compares different maximum live steam temperatures (585°C, 605°C, 620°C) and four alloys (grades 91 and 92, stainless S304H, and Thor 115) for heat exchangers exposed to steam oxidation. Results indicate that Thor 115, a creep strength enhanced ferritic (CSEF) steel, is a viable alternative to stainless steel for live steam temperatures above 600°C, offering improved oxidation resistance with minimal weight increase. Modern CSEF steels outperform stainless steel in power plants with lower capacity factors, reducing thermal fatigue during load changes. Increasing the live steam temperature boosts plant efficiency, leading to significant CO 2 savings for the same power output.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 855-866, October 11–14, 2016,
... was measured using a light microscope equipped with digital image analysis software. Statistical analyses of these data show the uniformity of the scale thickness, the maximum and minimum area, and the average size of each oxidation front in the scale. An electron microprobe with wavelength dispersive...
Abstract
View Papertitled, <span class="search-highlight">Oxidation</span> Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
View
PDF
for content titled, <span class="search-highlight">Oxidation</span> Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
Steam-side oxidation and the resultant exfoliation of iron-based scales cause unplanned shutdowns at coal-fired power generation plants. Exfoliate removal is currently limited to frequent unit cycling to minimize the volume of exfoliated scale, upgrading a plant with a “blow down” system, or installing a higher alloy. This paper discusses the rate of steam-side oxidation on Type 304H stainless steel (304H) tube after shot peening the internal surface with commercially available techniques. Shot peening the ID of Type 304H austenitic stainless steel superheater tubes has been shown to improve the overall oxidation resistance in steam. Decreasing the oxidation rate directly impacts the volume of exfoliated scale. The adherent spinel scales are thinner and more robust than non-shot peened tubes of the same alloy. Most of the improved oxidation resistance can be attributed to the presence of a spinel oxide layer combined with a continuous chromia layer formed near the steam-touched surfaces. The presence of a continuous chromia layer vastly reduces the outward diffusion of iron and minimizes the formation of iron-based scales that exfoliate. This work showed that a uniform cold-worker layer along the tube ID has a profound effect on oxidation resistance. Incomplete coverage allows oxidation to proceed in the non-hardened regions at a rate comparable to the oxidation rate on unpeened Type 304H.
1