Skip Nav Destination
Close Modal
Search Results for
oxidation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 395
Search Results for oxidation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 412-419, October 25–28, 2004,
... Abstract This paper investigates the combined effect of shot peening and pre-oxidation treatment in air on the subsequent steam oxidation resistance of Modified 9Cr-1Mo steel with different sulfur contents. Cast steel balls (50-180 μm diameter) and pure Cr (50-230 μm diameter) were used...
Abstract
View Papertitled, Effect of Shot Peening and Pre-<span class="search-highlight">oxidation</span> Treatment in Air on Steam <span class="search-highlight">Oxidation</span> Resistance of Mod.9Cr-1Mo Steel
View
PDF
for content titled, Effect of Shot Peening and Pre-<span class="search-highlight">oxidation</span> Treatment in Air on Steam <span class="search-highlight">Oxidation</span> Resistance of Mod.9Cr-1Mo Steel
This paper investigates the combined effect of shot peening and pre-oxidation treatment in air on the subsequent steam oxidation resistance of Modified 9Cr-1Mo steel with different sulfur contents. Cast steel balls (50-180 μm diameter) and pure Cr (50-230 μm diameter) were used for shot peening durations of 5-50 seconds. After shot peening, pre-oxidation was performed in air at 973K for 3.6ks. Then, oxidation testing was conducted in steam at 923K for up to 3.6Ms. Only the combination of Cr shot peening and pre-oxidation treatment facilitated the formation of a protective Cr-rich oxide scale on the specimen surface during pre-oxidation. This Cr-rich oxide scale remained stable during subsequent steam oxidation, resulting in excellent oxidation resistance of the steel.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 463-471, October 25–28, 2004,
... to enhance the steam oxidation resistance of these 9Cr steels strengthened by boron and fine MX nitrides. A combination of 0.7% Si, 40-60 ppm S, and pre-oxidation treatment was applied. Steam oxidation tests were conducted at 923K for up to 4000h. Pre-oxidation treatment in argon gas at 973K for 50h...
Abstract
View Papertitled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
View
PDF
for content titled, Effect of Argon Gas Pre-<span class="search-highlight">Oxidation</span> Treatment on the <span class="search-highlight">Oxidation</span> Behavior of NIMS High-Strength Steels
For high-strength steels developed at the National Institute for Materials Science (NIMS) in Japan, a dispersion of nano-sized MX nitride particles along boundaries and in the matrix is achieved by reducing carbon concentration below 0.02%. This structure results in excellent creep strength at 923K, approximately two orders of magnitude longer rupture time than P92. Additionally, adding a large amount of boron exceeding 0.01% combined with minimized nitrogen effectively improves creep rupture strength by stabilizing the martensitic microstructure during creep. Efforts have been made to enhance the steam oxidation resistance of these 9Cr steels strengthened by boron and fine MX nitrides. A combination of 0.7% Si, 40-60 ppm S, and pre-oxidation treatment was applied. Steam oxidation tests were conducted at 923K for up to 4000h. Pre-oxidation treatment in argon gas at 973K for 50h significantly improved oxidation resistance in steam at 923K by forming a protective Cr-rich oxide layer. The pre-oxidized steels exhibited much lower mass gain in steam at 923K than Mod.9Cr-1Mo steel at 873K, and lower than T91 at 873K after 1000h. After 4000h, their mass gain was about zero, much lower than P91 at 873K and 923K. SEM/EDS analysis and low mass gain suggest a protective Cr-rich oxide scale formed on the pre-oxidized steel surface, exhibiting excellent oxidation resistance in steam at 923K.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 813-822, October 11–14, 2016,
... Abstract Because of the problems experienced with steam-side oxidation in commercial power plants, there has been continuing interest in better understanding the steam oxidation behavior of creep strength enhanced ferritic steels such as grades 23, 24 and 91 as well as 300-series stainless...
Abstract
View Papertitled, Field and Laboratory Observations on the Steam <span class="search-highlight">Oxidation</span> Behavior of Creep Strength Enhanced Ferritic Steels and Austenitic Stainless Steels
View
PDF
for content titled, Field and Laboratory Observations on the Steam <span class="search-highlight">Oxidation</span> Behavior of Creep Strength Enhanced Ferritic Steels and Austenitic Stainless Steels
Because of the problems experienced with steam-side oxidation in commercial power plants, there has been continuing interest in better understanding the steam oxidation behavior of creep strength enhanced ferritic steels such as grades 23, 24 and 91 as well as 300-series stainless steels such as 347H and 304H. Analysis of field-exposed tubes has provided information on the oxidation reaction products but relatively few specimens are available and there is limited information about the kinetics. Specimens have included tube sections with a shot peened surface, a treatment that is now widely used for austenitic boiler tubes. To complement this information, additional laboratory studies have been conducted in 1bar steam at 600°-650°C on coupons cut from conventional and shot-peened tubing. Exposures of 1-15 kh provide some information on the steam oxidation kinetics for the various alloys classes. While shot-peened type 304H retained its beneficial effect on oxidation resistance past 10,000 h at 600° and 625°C, the benefit appeared to decline after similar exposures at 650°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 823-831, October 11–14, 2016,
... Abstract For higher efficiency and competitive overall performance, it would be an advantage to be able to safely exceed the highest operational values, currently up to about 600-620°C/25-30 MPa in supercritical (SC) boiler plants. Under such operating conditions the oxidation resistance in SC...
Abstract
View Papertitled, Evaluating The Effect of Cold Work on Supercritical <span class="search-highlight">Oxidation</span> of Boiler Tube Materials
View
PDF
for content titled, Evaluating The Effect of Cold Work on Supercritical <span class="search-highlight">Oxidation</span> of Boiler Tube Materials
For higher efficiency and competitive overall performance, it would be an advantage to be able to safely exceed the highest operational values, currently up to about 600-620°C/25-30 MPa in supercritical (SC) boiler plants. Under such operating conditions the oxidation resistance in SC water tends to limit the potential for further improvement of efficiency. The way to increase the oxidation resistance of traditional austenitic boiler tubes e.g. TP 347H is to do additional cold work on the boiler tube inner surface. In the current paper the effect of cold work on the oxidation resistance of TP347H and TP347HFG has been evaluated by shot peened samples with different parameters and subjecting those samples to supercritical oxidation exposure. The results show an improvement in the oxidation resistance of the alloys, especially in the large grained alloy TP347H. Also the uniformity of the deformation layer was seen to have an influence on the oxidation resistance, since the oxide nodules start to grow at locations with the thinnest or no deformation layer.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 832-843, October 11–14, 2016,
... Abstract Oxide scale formation in the inner bore of steam tubing has been identified as a key metric for determining operational parameters and life expectancy of modern boiler systems. Grade 91 tubing is commonly used for the construction of key components within boiler systems designed...
Abstract
View Papertitled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term <span class="search-highlight">Oxidation</span> in Steam
View
PDF
for content titled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term <span class="search-highlight">Oxidation</span> in Steam
Oxide scale formation in the inner bore of steam tubing has been identified as a key metric for determining operational parameters and life expectancy of modern boiler systems. Grade 91 tubing is commonly used for the construction of key components within boiler systems designed for power generation operating in the temperature range of 500 to 650 °C. Standard laboratory test procedures involve grinding the surface of test coupons to homogenise their surface structure and improve experimental consistency, however, data presented here shows a discrepancy between laboratory and industrial practices that has long term implications on scale growth kinetics and morphological development. Microstructural analysis of both virgin and ex-service tubing reveals the presence of a pre-existing oxide structure that is incorporated into the inwardly growing scale and is implicated in the formation of multiple laminar void networks. These void networks influence thermal diffusivity across the scale and may function as regions of spallation initiation and propagation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 855-866, October 11–14, 2016,
... Abstract Steam-side oxidation and the resultant exfoliation of iron-based scales cause unplanned shutdowns at coal-fired power generation plants. Exfoliate removal is currently limited to frequent unit cycling to minimize the volume of exfoliated scale, upgrading a plant with a “blow down...
Abstract
View Papertitled, <span class="search-highlight">Oxidation</span> Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
View
PDF
for content titled, <span class="search-highlight">Oxidation</span> Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
Steam-side oxidation and the resultant exfoliation of iron-based scales cause unplanned shutdowns at coal-fired power generation plants. Exfoliate removal is currently limited to frequent unit cycling to minimize the volume of exfoliated scale, upgrading a plant with a “blow down” system, or installing a higher alloy. This paper discusses the rate of steam-side oxidation on Type 304H stainless steel (304H) tube after shot peening the internal surface with commercially available techniques. Shot peening the ID of Type 304H austenitic stainless steel superheater tubes has been shown to improve the overall oxidation resistance in steam. Decreasing the oxidation rate directly impacts the volume of exfoliated scale. The adherent spinel scales are thinner and more robust than non-shot peened tubes of the same alloy. Most of the improved oxidation resistance can be attributed to the presence of a spinel oxide layer combined with a continuous chromia layer formed near the steam-touched surfaces. The presence of a continuous chromia layer vastly reduces the outward diffusion of iron and minimizes the formation of iron-based scales that exfoliate. This work showed that a uniform cold-worker layer along the tube ID has a profound effect on oxidation resistance. Incomplete coverage allows oxidation to proceed in the non-hardened regions at a rate comparable to the oxidation rate on unpeened Type 304H.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 867-876, October 11–14, 2016,
...-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants. AUSC power plants austenitic steel boiler efficiency corrosion resistance high-temperature oxidation nickel-based alloys...
Abstract
View Papertitled, High Temperature <span class="search-highlight">Oxidation</span> of Austenitic Steels and Nickel-Based Alloys in Steam Environment
View
PDF
for content titled, High Temperature <span class="search-highlight">Oxidation</span> of Austenitic Steels and Nickel-Based Alloys in Steam Environment
Most effective method to increase the boiler efficiency and decrease emissions is to increase the steam temperature of modern coal-fired power plants. The increase in the steam temperature of the AUSC power plants will require higher grade heat-resistant materials to support the long-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 877-887, October 11–14, 2016,
... Abstract A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep...
Abstract
View Papertitled, Tenaris New High Steam <span class="search-highlight">Oxidation</span> Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
View
PDF
for content titled, Tenaris New High Steam <span class="search-highlight">Oxidation</span> Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASTM grade 91, above 600 °C, particularly related to scale growth and liftoff. After laboratory development, Thor was successfully validated at the industrial level. Several heats up to 80 metric tons were cast at the steel shop, hot rolled to tubes of various dimensions, and heat treated. Trial heats underwent extensive characterization, including deep microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 900-911, October 11–14, 2016,
... strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> Resistance of Advanced Austenitic Steels with High Cr Content and Advanced Ni Based Alloys at High Temperatures for A-USC Coal Fired Power Plants
The A-USC technology is still under development due to limited number of materials complying with the requirements of high creep strength and high performance in highly aggressive corrosion environments. Development of power plant in much higher temperatures than A-USC is currently impossible due to the materials limitation. Currently, nickel-based superalloys besides advanced austenitic steels are the viable candidates for some of the A-USC components in the boiler, turbine, and piping systems due to higher strength and improved corrosion resistance than standard ferritic or austenitic stainless steels. The paper, presents the study performed at 800 °C for 3000 hours on 3 advanced austenitic steels; 309S, 310S and HR3C with higher than 20 Cr wt% content and 4 Ni-based alloys including: two solid-solution strengthened alloys (Haynes 230), 617 alloy and two (γ’) gamma - prime strengthened materials (263 alloy and Haynes 282). The high temperature oxidation tests were performed in water to steam close loop system, the samples were investigated analytically prior and after exposures using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectrometry (EDS), and X-Ray Diffractometer (XRD). Mass change data have been examined every 250 hours.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 912-923, October 11–14, 2016,
... not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air...
Abstract
View Papertitled, Fireside Corrosion and Steamside <span class="search-highlight">Oxidation</span> Behavior of HAYNES 282 Alloy for A-USC Applications
View
PDF
for content titled, Fireside Corrosion and Steamside <span class="search-highlight">Oxidation</span> Behavior of HAYNES 282 Alloy for A-USC Applications
The Advanced Ultrasupercritical (A-USC) power plants are aimed to operate at steam inlet temperatures greater than 700°C; consequently, a complete materials overhaul is needed for the next-generation power plants. HAYNES 282, a gamma-prime strengthened alloy, is among the leading candidates because of its unique combination of properties, superior creep and LCF strength, fabricability and thermal stability. It is currently being evaluated in wrought and cast forms for A-USC turbine rotors, casings, boiler tubings, header, and valves. The candidate materials for A-USC applications not only require oxidation resistance for steam cycles but fireside corrosion resistance to coal ash is also of an extreme importance. In order to study the effect of both environments on the performance of 282 alloy, the alloy was exposed for extended periods in various oxidizing environments, such as air, air plus water vapor (10%), and 17bar steam up to 900°C. The fireside corrosion resistance of 282 alloy was evaluated at 700°C in synthetic coal ash and at 843°C in alkali salt deposits in a controlled gaseous environment.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 924-930, October 11–14, 2016,
... to operate at higher temperatures and pressure cycles coupled with demanding hot corrosion and oxidation environments. Such an operation will significantly influence the performance of materials used for boilers and heat exchanger components by accelerating oxidation rates and lowering mechanical properties...
Abstract
View Papertitled, Supercritical Water <span class="search-highlight">Oxidation</span> and Creep Behaviour of Boiler Tube Materials
View
PDF
for content titled, Supercritical Water <span class="search-highlight">Oxidation</span> and Creep Behaviour of Boiler Tube Materials
High efficiency in power generation is not only desirable because of economical reasons but also for enhanced environmental performance meaning reduced quantity of forming ash and emissions. In modern medium to large size plants, improvements require supercritical steam values. Furthermore, in future there will be an increasing share of renewables, such as wind and solar power, which will enhance the fluctuation of supply with the consequence that other power sources will have to compensate by operating in a more demanding cyclic or ramping mode. The next generation plant will need to operate at higher temperatures and pressure cycles coupled with demanding hot corrosion and oxidation environments. Such an operation will significantly influence the performance of materials used for boilers and heat exchanger components by accelerating oxidation rates and lowering mechanical properties like creep resistance. The paper discusses the oxidation behaviour of San25, 800H and alloy 263 in supercritical water at temperatures 650 and 700 °C at 250 bar, and compares the changes of mechanical properties of materials at these temperatures.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 989-1000, October 11–14, 2016,
... such as ASTM grades P91 and P92. An increase of creep rupture stress of more than +20% was recorded. Oxidation tests in steam at 650°C revealed an anomalous response of the material. Several specimens exhibited excellent oxidation resistance commonly only seen for grades of higher chromium content...
Abstract
View Papertitled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and <span class="search-highlight">Oxidation</span>
View
PDF
for content titled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and <span class="search-highlight">Oxidation</span>
The presented work summarizes the results of more than 10 years of research at TU Graz and TU Chemnitz and partners on a martensitic boron and nitrogen stabilized 9Cr3W3Co (MARBN) steel grade. The design philosophy of MARBN steels is presented and critical issues regarding boron and nitrogen balance are discussed. Microstructural characterization of two different laboratory heats, is presented and efforts in European projects towards an upscaling of melts are presented. Base material creep testing data at 650 °C up to 50.000 hours is presented and assessed to commercial alloys such as ASTM grades P91 and P92. An increase of creep rupture stress of more than +20% was recorded. Oxidation tests in steam at 650°C revealed an anomalous response of the material. Several specimens exhibited excellent oxidation resistance commonly only seen for grades of higher chromium content. The anomalous oxidation behaviour is identified and discussed, although the causes remain yet unclear. Results of manufacturing, characterization and testing of different MARBN welds, including gas-tungsten-arc-, gas-metal-arc-, friction stir and electron beam welds reveal a microstructure memory effect in the heat affected zone, so that no uniform fine-grained zone is present. The behaviour of crosswelds during long-term creep testing at 650 °C up to more than 32.000 hours is assessed and the susceptibility to Type IV cracking is discussed. The manuscript summarizes research of more than 10 years, presents current research activities on MARBN and describes open questions for an alloy identified as a promising martensitic steel grade for elevated temperature components.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... Abstract The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented...
Abstract
View Papertitled, Influence of Aluminum Diffusion Layer on T/P92 Steam <span class="search-highlight">Oxidation</span> Resistance - A Laboratory and Field Study
View
PDF
for content titled, Influence of Aluminum Diffusion Layer on T/P92 Steam <span class="search-highlight">Oxidation</span> Resistance - A Laboratory and Field Study
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 753-764, October 22–25, 2013,
... Abstract Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored...
Abstract
View Papertitled, High Pressure Steam <span class="search-highlight">Oxidation</span>: Extents and Influences
View
PDF
for content titled, High Pressure Steam <span class="search-highlight">Oxidation</span>: Extents and Influences
Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored and offer the opportunity of simplification which enables the study of individual parameters through isolating them from other factors, such as temperature transients. The influence of pressure on the oxidation of power plant materials has always been considered to be less significant than the effects of temperature and Cr content, but still remains a subject of differing opinions. Experimental efforts, reported in the literature, to measure the influence of steam pressure on the rate of oxidation have not produced very consistent or conclusive results. To examine this further a series of high pressure steam oxidation exposures have been conducted in a high pressure flowing steam loop, exposing a range of materials to flowing steam at 650 and 700 °C and pressure of 25, 50 and 60 bar. Data is presented for ferritic-martensitic alloys showing the effect of increasing pressure on the mass change and oxide thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 765-776, October 22–25, 2013,
... Abstract As part of the Boiler Materials for Ultrasupercritical Coal Power Plants program, sponsored by the United States (U.S.) Department of Energy (DOE) and the Ohio Coal Development Office (OCDO), the steamside oxidation and oxide exfoliation behavior of candidate alloys have been...
Abstract
View Papertitled, Effect of Temperature, Alloy Composition and Surface Treatment on the Steamside <span class="search-highlight">Oxidation</span> / <span class="search-highlight">Oxide</span> Exfoliation Behavior of Candidate A-USC Boiler Materials
View
PDF
for content titled, Effect of Temperature, Alloy Composition and Surface Treatment on the Steamside <span class="search-highlight">Oxidation</span> / <span class="search-highlight">Oxide</span> Exfoliation Behavior of Candidate A-USC Boiler Materials
As part of the Boiler Materials for Ultrasupercritical Coal Power Plants program, sponsored by the United States (U.S.) Department of Energy (DOE) and the Ohio Coal Development Office (OCDO), the steamside oxidation and oxide exfoliation behavior of candidate alloys have been thoroughly evaluated in steam at temperatures between 620°C and 800°C (1148°F and 1472°F) for times up to 10,000 hours. The results from this test program indicate that the oxidation rates and oxide morphologies associated with steamside oxidation are a strong function of the crystallographic lattice structure and the chromium content of the material. Oxide exfoliation correlates to oxide thickness. The time required to reach the critical oxide thickness for exfoliation can be estimated based on oxidation kinetic relationships. For austenitic stainless steels, shot peening is effective in reducing steamside oxidation/exfoliation, but the efficacy of this technique is limited by the operating temperature. Nickel-based alloys exhibit very low oxidation/exfoliation rates, but have a propensity to form aluminum/titanium oxides along near surface grain boundaries.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 777-790, October 22–25, 2013,
... Abstract CWT (combined water treatment) was introduced in Japan in 1990 and over 50 power generation boilers are now in operation. However, the effect of oxygenated treatment on the steam oxidation of the ferritic-martensitic steels and austenitic stainless steels that are used for superheaters...
Abstract
View Papertitled, Effect of Oxygen Content of Steam on the Steam <span class="search-highlight">Oxidation</span> Behavior of Boiler Tube Materials
View
PDF
for content titled, Effect of Oxygen Content of Steam on the Steam <span class="search-highlight">Oxidation</span> Behavior of Boiler Tube Materials
CWT (combined water treatment) was introduced in Japan in 1990 and over 50 power generation boilers are now in operation. However, the effect of oxygenated treatment on the steam oxidation of the ferritic-martensitic steels and austenitic stainless steels that are used for superheaters and reheaters is currently far from clear. In this study, laboratory tests were used to examine the effect of the oxygen level of the feed water on the scale growth and the scale exfoliation propensity of T91 ferritic-martensitic steel and 300-series austenitic stainless steels, as represented by TP316H and TP347H (coarse- and fine-grained, respectively). The oxygen level of the feed water had little effect on the steam oxidation rates of all the steels tested. Hematite (Fe 2 O 3 ) formed in the outer layer of the oxide scales on both the ferritic and austenitic steels and is considered to have been encouraged in the simulated CWT atmosphere. The adhesion strength of the oxide scale formed on T91 in the simulated CWT atmosphere, that is, scale in which hematite was present, was lower than that of the oxide scale formed in the simulated AVT (all volatile treatment) atmosphere. The oxidation rate of fine-grained TP347H was confirmed to be slower than that of coarse-grained TP316H. Hematite significantly influenced the scale exfoliation of the austenitic steels and the critical oxide thickness for exfoliation decreased with increasing proportion of hematite in the outer scale.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 791-802, October 22–25, 2013,
... Abstract To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters...
Abstract
View Papertitled, Evaluation of Supercritical <span class="search-highlight">Oxidation</span> Resistance of Boiler Tube Materials
View
PDF
for content titled, Evaluation of Supercritical <span class="search-highlight">Oxidation</span> Resistance of Boiler Tube Materials
To improve the efficiency of fossil fuel power plants the operating temperatures and pressures need to be increased. However, at high temperatures the steam side oxidation resistance becomes a critical issue for the steels used especially at the final stages of superheaters and reheaters. Apart from the chemical composition of the material, surface condition is a major factor affecting the oxidation resistance in steam and supercritical water. In this paper, stainless boiler steels (UNS S34710, S31035, S31042, and S30942) are investigated for oxidation resistance in flowing supercritical water. Tests were conducted in an autoclave environment (250 bar, with 125 ppb dissolved oxygen and a pH of 7) at 625°C, 650°C and 675°C for up to 1000 h. Materials were tested with as-delivered, shot peened, milled or spark eroded and ground surface finish. The results show a strong influence of surface finish at the early stages of oxidation. Oxides formed on cold worked surfaces were more adherent and much thinner than on a spark eroded and ground surface. This effect was stronger than the influence of temperature or alloy composition within the tested ranges.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 803-814, October 22–25, 2013,
... Abstract Because of the problems experienced with steam-side oxide scale exfoliation in commercial power plants, there has been increased interest in understanding the steam oxidation resistance of 300- series stainless steels such as 347H and 304H. Model alloys were used in an attempt...
Abstract
View Papertitled, Effects of Alloy Composition and Surface Engineering on Steam <span class="search-highlight">Oxidation</span> Resistance
View
PDF
for content titled, Effects of Alloy Composition and Surface Engineering on Steam <span class="search-highlight">Oxidation</span> Resistance
Because of the problems experienced with steam-side oxide scale exfoliation in commercial power plants, there has been increased interest in understanding the steam oxidation resistance of 300- series stainless steels such as 347H and 304H. Model alloys were used in an attempt to understand the effect of varying Ni (9-12%) and Cr (16-20%) on steam oxidation resistance at 650°C. However, the model alloys generally showed superior oxidation resistance than commercial alloys of similar composition. Several surface engineering solutions also were investigated. The commercially favored solution is shot peening. Laboratory steam testing at 650°C found that annealing temperatures of ≥850°C eliminated the benefit of shot peening and a correlation was observed with starting hardness in the peened region. This effect of annealing has implications for the fabrication of shot peened tubing. Another route to improving oxidation resistance is the use of oxidation resistant diffusion coatings, which can be deposited inexpensively by a vapor slurry process. Uniform coatings were deposited on short tube sections and annealed at 1065°C to retain good 650°C creep properties. The coating was thicker than has been investigated in laboratory processes resulting in increased brittleness when the coating was assessed using 4-point bending.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 815-820, October 22–25, 2013,
... Abstract Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution...
Abstract
View Papertitled, Steam <span class="search-highlight">Oxidation</span> of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
View
PDF
for content titled, Steam <span class="search-highlight">Oxidation</span> of the Novel Austenitic Steel of Fe-20Cr-30Ni-2Nb (at.%) at 973 K
Steam oxidation of a novel austenitic steel, of which composition is Fe-20Cr-30Ni-2Nb (at.%), has been conducted at 973 K to evaluate steam oxidation resistance based on detail analyses of scale morphology and scale growth. Two types of scale morphologies were observed in the solution treated sample, depending on the grain of the steel. Although thin duplex scale with the Cr-rich layer was formed in the early stage, most of the surface was covered with thick duplex scale which consists of magnetite as the outer scale and the mixture of Fe-Cr spinel and metallic Ni as the inner scale. On the other hand, surface morphology of the oxide scale was independent of grain of the steel and thick duplex scale as seen on the solution treated sample was formed on the pre-aged sample. Steam oxidation resistance of the steel is almost the same as that of commercial austenitic steels and it can be improved by the surface treatment such as shot peening. Based on the results, this steel has both enough creep rupture strength and good steam oxidation resistance for A-USC power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development...
Abstract
View Papertitled, Steam Loop Testing of A-USC Materials for <span class="search-highlight">Oxidation</span> and Fireside Corrosion - Alstom’s Experience to Date
View
PDF
for content titled, Steam Loop Testing of A-USC Materials for <span class="search-highlight">Oxidation</span> and Fireside Corrosion - Alstom’s Experience to Date
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
1