Skip Nav Destination
Close Modal
Search Results for
optical thickness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 171
Search Results for optical thickness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1256-1267, October 22–25, 2013,
... oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising...
Abstract
View Papertitled, Non-Destructive and <span class="search-highlight">Optical</span> <span class="search-highlight">Thickness</span> Measurements of Steam Grown Oxide on Contacting Surfaces of Power Plant
View
PDF
for content titled, Non-Destructive and <span class="search-highlight">Optical</span> <span class="search-highlight">Thickness</span> Measurements of Steam Grown Oxide on Contacting Surfaces of Power Plant
Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising results. Improvements on the measurement resolution have been practically demonstrated with oxides down to 65 μm thickness being measured successfully.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
...-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding...
Abstract
View Papertitled, Phase Transformations and Microstructure in Gas Tungsten Arc Welds of Grade 23 Steel Tubing
View
PDF
for content titled, Phase Transformations and Microstructure in Gas Tungsten Arc Welds of Grade 23 Steel Tubing
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 924-929, October 21–24, 2019,
... treatments employed to hot-die steels. Salt-bath nitrocarburizing was carried out at 823 K for 0.1-10 h. The microstructures of the cross-sectional surface layers of the samples were examined using an optical microscope and FE-SEM. Elemental mapping as well as phase identification of the surface layers were...
Abstract
View Papertitled, Effect of Silicon and Chromium Additions on Surface Oxide/Nitride Layers in a Fe-0.4 wt.% C Alloy by Novel Salt-Bath Nitrocarburizing Treatment
View
PDF
for content titled, Effect of Silicon and Chromium Additions on Surface Oxide/Nitride Layers in a Fe-0.4 wt.% C Alloy by Novel Salt-Bath Nitrocarburizing Treatment
A novel salt-bath nitrocarburizing process recently developed forms a lithium-iron compound-oxide layer on the surface of steel in concurrence with a nitride layer by adding lithium ions to the molten salt. This process has already been successfully applied to mass-produced products. However, the microstructure and its formation process of the surface layer in alloyed steels during the nitrocarburizing process have not yet been fully understood. In this study, we focus on the effect of Si and Cr, which are included in a common die steel, on the microstructure of an oxide layer of a nitrocarburized alloy. The alloys used in this study are Fe-0.4wt%C, Fe-0.4wt%C-2.0wt%Si, and Fe-0.4wt%C-2.0wt%Cr. These alloys were arc melted into button ingots under an Ar atmosphere. The ingots were annealed at 1123 K for 1.0 h, followed by air cooling and double tempering at 873 K, similar to the heat treatments employed to hot-die steels. Salt-bath nitrocarburizing was carried out at 823 K for 0.1-10 h. The microstructures of the cross-sectional surface layers of the samples were examined using an optical microscope and FE-SEM. Elemental mapping as well as phase identification of the surface layers were done by EDS, XRD, and GD-OES. In the Fe-C binary alloy, a thin continuous oxide layer of α-LiFeθ 2 formed first on the outermost surface, and a thick iron nitride layer developed underneath the oxide layer, with aligned oxide particles along the grain boundaries of the nitrogen compound layer. In the case of Si addition, the outermost oxide layer became thinner and an additional oxide layer consisting of α-LiFeθ 2 and (Li,Fe) 3 Siθ 4 formed between the outer oxide layer and nitrogen compound layer, and the formation of the oxide particles in the nitrogen compound layer was fully suppressed. In the case of Cr addition, internal oxide particles formed in the nitrogen compound layer, similar to those in the binary steel, although an continuous oxide layer of CrfN,O) formed in between those layers. On the basis of these results, the inner oxide layer formed with Si addition contributes to improving the frictional wear characteristics in die steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, February 25–28, 2025,
... the interference patterns formed by reflected light and calculates parameters such as height, thickness, flatness, surface characteristics, and vibration. Interferometry is used for precise adjustments and measurements in optical metrology and inspection fields, utilizing various light sources like lasers, white...
Abstract
View Papertitled, Coal-fired Power Plant Boiler Tube Corrosion Inspection Equipment and Remaining Lifetime Evaluation Program
View
PDF
for content titled, Coal-fired Power Plant Boiler Tube Corrosion Inspection Equipment and Remaining Lifetime Evaluation Program
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 162-173, October 21–24, 2019,
... on the side surface of specimens as shown in Fig.1. Mechanical and microstructural properties were evaluated by tensile tests at room temperature and optical, secondary electron and transmission electron microscopy of replica films taken from etched surfaces at the center of specimen thickness. In case...
Abstract
View Papertitled, Effect of Impurity Level and Normalizing Condition on Creep Rupture Behavior of 2.25Cr-1Mo Steel <span class="search-highlight">Thick</span> Weld Joint
View
PDF
for content titled, Effect of Impurity Level and Normalizing Condition on Creep Rupture Behavior of 2.25Cr-1Mo Steel <span class="search-highlight">Thick</span> Weld Joint
Two materials with different purity of 2.25Cr-1Mo steel thick weld joint were prepared and creep rupture behavior was investigated by large sized specimens. For high purity material, two types of challenging heat treatment was tried to modify the original microstructural conditions. Weld joints were made and large sized creep test specimens were machined. Creep tests were performed at 903K, 40MPa. Specimen made from low purity material fractured at fine grained heat affected zone (FGHAZ) and showed so-called Type IV cracking. On the other hand, specimen made from high purity material showed maximum creep damage at weld metal. In the case of specimens applied challenging heat treatment, remarkably high ductility were observed at fracture. Regarding 2.25Cr-1Mo steel, it was confirmed that the suppression of Type IV cracking had been basically achieved by past improvement on purity level. At the same time, improvement of heat treatment condition was found to have further effect. Because of improved creep properties of high purity material, properties of weld metal had rose up to be the next issue to be examined. At least, taking care on layout design of weld beads to avoid creating wide spread fine grained portion is desired.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1071-1080, October 22–25, 2013,
... plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect...
Abstract
View Papertitled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
View
PDF
for content titled, Precipitation Strengthening by the Nitrides in High Cr Containing Ferritic Creep Resistant Steels
High nitrogen steel was manufactured by solid state nitriding and Laminate- rolling at laboratory to study the nitride morphology and creep properties through the TEM, EPMA and creep strain test. Nitriding made the nitride dispersing steels possible. Solid state nitriding of thin plates and those laminate rolling enabled the high nitrogen containing thick plate steel. Precipitated coarse nitrides during the nitriding resolved by normalizing and re-precipitated by tempering finely. Needle type VN was detected in V containing high nitrogen steels. Its coherency seems to affect the creep strength significantly. V precipitated steels indicated the higher creep strength than the steels without VN precipitation. Thermodynamically stable precipitates like VN increases the creep rupture strength. Ti and Zr containing high nitrogen steels also will be evaluated and discussed by the presentation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 615-626, October 22–25, 2013,
... by the abrasive polishing stages. All evaluations were performed on the longitudinal/width plane at the mid thickness of the cross weld samples. An inverted Reichert-Jung MeF3 optical microscope was used to perform the initial microstructural characterisation before the detailed investigations undertaken using...
Abstract
View Papertitled, The Effect of Post Weld Heat Treatment on the Creep Behaviour and Microstructural Evolution in Grade 92 Steel Welds for Steam Pipe Applications
View
PDF
for content titled, The Effect of Post Weld Heat Treatment on the Creep Behaviour and Microstructural Evolution in Grade 92 Steel Welds for Steam Pipe Applications
Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used to achieve sufficient toughness in the weld. To relieve the internal stress in the welds and to stabilise their microstructures, a post weld heat treatment (PWHT) is commonly applied. The heat treatment conditions used for the PWHT have a significant effect on both the resulting microstructure and the creep behaviour of the welds. In this study, interrupted creep tests were carried out on two identical Grade 92 welds that had been given PWHTs at two different temperatures: 732°C and 760°C. It was found that the weld with the lower PWHT temperature had a significantly reduced stain rate during the creep test. In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT temperatures on the microstructure, initially the microstructures in the head portions of the two creep test bars were compared. This comparison was performed quantitatively using a range of electron/ion microscopy based techniques. It was apparent that in the sample subjected to the higher PWHT temperature, larger Laves phase particles occurred and increased matrix recovery was observed compared with the sample subjected to the lower PWHT temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 777-790, October 22–25, 2013,
... thickness of the inner scales of the fine-grained TP347H was less than that of the coarse-grained TP316H, and for TP347H, the mean thickness of the coupon specimens was greater 782 than that of the half rings of tube. Figure 11 shows optical cross-sections of scales formed on the coarse-grained TP316H...
Abstract
View Papertitled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler Tube Materials
View
PDF
for content titled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler Tube Materials
CWT (combined water treatment) was introduced in Japan in 1990 and over 50 power generation boilers are now in operation. However, the effect of oxygenated treatment on the steam oxidation of the ferritic-martensitic steels and austenitic stainless steels that are used for superheaters and reheaters is currently far from clear. In this study, laboratory tests were used to examine the effect of the oxygen level of the feed water on the scale growth and the scale exfoliation propensity of T91 ferritic-martensitic steel and 300-series austenitic stainless steels, as represented by TP316H and TP347H (coarse- and fine-grained, respectively). The oxygen level of the feed water had little effect on the steam oxidation rates of all the steels tested. Hematite (Fe 2 O 3 ) formed in the outer layer of the oxide scales on both the ferritic and austenitic steels and is considered to have been encouraged in the simulated CWT atmosphere. The adhesion strength of the oxide scale formed on T91 in the simulated CWT atmosphere, that is, scale in which hematite was present, was lower than that of the oxide scale formed in the simulated AVT (all volatile treatment) atmosphere. The oxidation rate of fine-grained TP347H was confirmed to be slower than that of coarse-grained TP316H. Hematite significantly influenced the scale exfoliation of the austenitic steels and the critical oxide thickness for exfoliation decreased with increasing proportion of hematite in the outer scale.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 540-551, February 25–28, 2025,
.... The formation of the corrosion product is uniformly distributed over the substrate surface, measuring between 0.5 - 8 m in thickness. The absence or existence of the corrosion product following cold-spray processing will be used as a critical criterion to evaluate the effectiveness of the cold-spray cleaning...
Abstract
View Papertitled, Investigation of Cold-spray Performance for Cleaning and Repair of Dry Cask Storage System (DCSS) Canisters within a Characteristic Confinement
View
PDF
for content titled, Investigation of Cold-spray Performance for Cleaning and Repair of Dry Cask Storage System (DCSS) Canisters within a Characteristic Confinement
Extended storage of spent nuclear fuel (SNF) in intermediate dry cask storage systems (DCSS) due to lack of permanent repositories is one of the key issues for sustainability of the current domestic Light Water Reactor (LWR) fleet. The stainless steel canisters used for storage in DCSS are potentially susceptible to chloride-induced stress corrosion cracking (CISCC) due to a combination of tensile stresses, susceptible microstructure, and a corrosive chloride salt environment. This research assesses the viability of the cold-spray process as a solution to CISCC in DCSS when sprayed with miniature tooling within a characteristic confinement in two different capacities: cleaning and coating. In general, the cold-spray process uses pressurized and preheated inert gas to propel powders at supersonic velocities, while remaining solid-state. Cold-spray cleaning is an economical, non-deposition process that leverages the mechanical force of the propelled powders to remove corrosive buildup on the canister, whereas the cold spray coating process uses augmented parameters to deposit a coating for CISCC repair and mitigation purposes. Moreover, both processes have the potential to induce a surface compressive residual stress that is known to impede the initiation of CISCC. Surface morphology, deposition analysis, and microstructural developments in the near-surface region were examined. Additionally, cyclic corrosion testing (CCT) was conducted to elucidate the influence of cold-spray cleaning and coating on corrosion performance.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 753-764, October 22–25, 2013,
... would be expected to be in the range of 74 to 80 m 758 for Fe-10Cr and 69 to 75 m for P92. This would equate to inner oxide thickness values of 37 to 40 m for Fe-10Cr and ~34 to ~37 m for P92. Figure 6 Optical micrographs of representative areas from the samples exposed to atmospheric and elevated...
Abstract
View Papertitled, High Pressure Steam Oxidation: Extents and Influences
View
PDF
for content titled, High Pressure Steam Oxidation: Extents and Influences
Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored and offer the opportunity of simplification which enables the study of individual parameters through isolating them from other factors, such as temperature transients. The influence of pressure on the oxidation of power plant materials has always been considered to be less significant than the effects of temperature and Cr content, but still remains a subject of differing opinions. Experimental efforts, reported in the literature, to measure the influence of steam pressure on the rate of oxidation have not produced very consistent or conclusive results. To examine this further a series of high pressure steam oxidation exposures have been conducted in a high pressure flowing steam loop, exposing a range of materials to flowing steam at 650 and 700 °C and pressure of 25, 50 and 60 bar. Data is presented for ferritic-martensitic alloys showing the effect of increasing pressure on the mass change and oxide thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 171-184, August 31–September 3, 2010,
... as the cooling medium. These tests were performed on a tube specimen of AISI316 stainless steel with a 40 mm OD with a 3 mm wall thickness. Using compressed air and a 3 kW wire wound furnace a temperature difference across the wall of 40 °C has been achieved. Based on this temperature drop and a thermal...
Abstract
View Papertitled, The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials
View
PDF
for content titled, The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials
The drive for increased efficiency and carbon reduction in next-generation boilers is pushing conventional materials to their limits in terms of strength and oxidation resistance. While traditional isothermal testing of simple coupons provides some insight into material performance, it fails to accurately represent the heat transfer conditions present in operational boilers. This paper introduces a novel test method designed to evaluate the degradation of candidate materials under more realistic heat flux conditions. The method, applied to tubular specimens using both laboratory air and steam as cooling media, demonstrates a significant impact of thermal gradients on material performance. Initial comparisons between tubular heat flux specimens and flat isothermal specimens of 15Mo3 revealed increased oxidation kinetics and altered oxide morphology under heat flux conditions. The paper details the design of this heat flux test, presents results from initial work on 15Mo3 under air and steam conditions, and includes findings from further studies on oxides formed on 2-1/4Cr material under both heat flux and isothermal conditions. This research represents a crucial step toward more accurate prediction of material behavior in next-generation boiler designs.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 976-980, October 21–24, 2019,
.... No significant differences were observed in oxidation kinetics while different microstructures of the oxide scale were found. Coarse and columnar chromia grains developed on SLM specimens, whereas the chromia scale of EBM specimens consisted of extremely fine grains. Glow Discharge Optical Emission Spectrometry...
Abstract
View Papertitled, Oxidation Behavior of Alloy 718 Built Up by Selective Laser Melting
View
PDF
for content titled, Oxidation Behavior of Alloy 718 Built Up by Selective Laser Melting
The current work presented a study of isothermal-oxidation behavior of the additive manufactured (AM) Alloy718 in air at 800°C. The oxidation behavior of Alloy718 specimens produced by selective laser melting (SLM) and electron beam melting (EBM) process were comparatively examined. No significant differences were observed in oxidation kinetics while different microstructures of the oxide scale were found. Coarse and columnar chromia grains developed on SLM specimens, whereas the chromia scale of EBM specimens consisted of extremely fine grains. Glow Discharge Optical Emission Spectrometry (GD-OES) analysis revealed that SLM specimens contain a higher content of Ti in chromia compared with EBM specimens. Process-induced supersaturation in SLM specimens might lead to a relatively high concentration of Ti in the chromia, which may affect the grain morphology of oxide scale in the SLM specimen.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... Abstract Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air...
Abstract
View Papertitled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
View
PDF
for content titled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for Gas Turbine Transition Pieces
Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
.... 0.055 0.19 0.24 0.011 0.001 2.20 0.10 1.60 0.21 0.41 0.001 0.009 0.0031 0.002 0.1 Steels max. 0.060 0.20 0.49 0.014 0.002 0.10 2.47 0.29 1.68 0.25 0.50 0.077 0.014 0.0044 0.016 7.4 The ingots were hot forged and rolled to plates with 15mm thickness. Continuous cooling transformation behavior...
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for Fossil Fired and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 881-891, October 22–25, 2013,
... Co, 1.2 Al, 0.4 Ti After testing the samples were moulded in plastic after which the prepared and polished sample cross-sections were analysed using optical and SEM/EDX microscopy to determine the oxide layer thickness and metal loss as well as the elemental distribution in the oxides...
Abstract
View Papertitled, Fireside Corrosion and Carburization of Superheater Materials in Simulated Oxyfuel Combustion Conditions
View
PDF
for content titled, Fireside Corrosion and Carburization of Superheater Materials in Simulated Oxyfuel Combustion Conditions
Oxyfuel combustion is considered as one of the most promising technologies to facilitate CO 2 capture from flue gases. In oxyfuel combustion, the fuel is burned in a mixture of oxygen and recirculated flue gas. Flue gas recirculation increases the levels of fireside CO 2 , SO 2 , Cl and moisture, and thus promotes fouling and corrosion. In this paper the corrosion performance of two superheater austenitic stainless steels (UNS S34710 and S31035) and one Ni base alloy (UNS N06617) has been determined in laboratory tests under simulated oxyfuel conditions with and without a synthetic carbonate based deposits (CaCO 3 - 15 wt% CaSO 4 , CaCO 3 - 14wt% CaSO 4 - 1 KCl) at 650 and 720°C up to 1000 hours. No carburization of the metal substrate was observed after exposure to simulated oxyfuel gas atmospheres without deposit, although some carbon enrichment was detected near the oxide metal interface. At 720°C a very thin oxide formed on all alloy surfaces while the weight changes were negative. This negative weight change observed is due to chromium evaporation in the moist testing condition. At the presence of deposits, corrosion accelerated and considerable metal loss of austenitic alloys was observed at 720°C. In addition, clear carburization of austenitic steel UNS S34710 occurred.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 347-355, October 11–14, 2016,
... in a supercritical boiler was analyzed, the microstructural evolution of austenitic stainless steel tubes were studied, a full investigation into the failure cause was carried out involving in visual examination, optical microscope, SEM, TEM and XRD. The results show, sigma phase precipitates in this austenitic...
Abstract
View Papertitled, Creep Failure Analysis of Superheater Tubes in a Supercritical Boiler
View
PDF
for content titled, Creep Failure Analysis of Superheater Tubes in a Supercritical Boiler
Up to now, the amount of supercritical boilers in China has ranked number one in the world. Many supercritical boilers have run for more than 100,000 hours. Creep becomes one of the main reasons for supercritical boiler tubes failure. In this article, the failure of superheater tubes in a supercritical boiler was analyzed, the microstructural evolution of austenitic stainless steel tubes were studied, a full investigation into the failure cause was carried out involving in visual examination, optical microscope, SEM, TEM and XRD. The results show, sigma phase precipitates in this austenitic steel with the extension of service time, sigma precipitates form at grain boundaries by continuous chain. Sigma precipitates are hard and brittle, weaken grain boundaries and cause microscopic damage, eventually lead to boiler tubes failure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 678-689, October 11–14, 2016,
... (Vacuum Induction Melting) and ESR (Electro-Slag Remelting) were selected for melting process. The solution treatment was conducted at 980 for 3 hours, followed by aging heat treatment at 720 for 16 hours. The microstructure observations were conducted by optical microscopy and TEM (transmission...
Abstract
View Papertitled, Development of Low Thermal Expansion Fe-Ni-Cr Austenitic Heat Resistant Steel for High Temperature Steam Turbine
View
PDF
for content titled, Development of Low Thermal Expansion Fe-Ni-Cr Austenitic Heat Resistant Steel for High Temperature Steam Turbine
Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher creep rupture strength and better oxidation resistance than conventional high Cr ferritic steels and austenitic steels. The 2 ton ESR ingot was forged or hot rolled without defects, and the blade trial manufacturing was successfully done. This alloy is one of the best candidates for USC and A-USC turbine components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1024-1035, October 21–24, 2019,
.... This allows one to differentiate the oxide layer from the epoxy mount. Prior to copper plating, sample surfaces were coated with a thin layer of gold. Low magnification oxide thickness and morphology analysis was performed with a Keyence VHX-2000 optical microscope. Samples were also analyzed using a JEOL JSM...
Abstract
View Papertitled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
View
PDF
for content titled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation and maintenance of these systems. Sandia has recently explored methods available for in-situ alloy corrosion monitoring. Electrical resistance (ER) was chosen for initial tests due the operational simplicity and commercial availability. A series of long duration (>1000 hours) experiments have recently been completed at a range of temperatures (400-700°C) using ER probes made from four important structural alloys (C1010 Carbon Steel, 410ss, 304L, 316L) being considered for sCO 2 systems. Results from these tests are presented, including correlations between the probe measured corrosion rate to that for witness coupons of the same alloys.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 869-879, October 21–24, 2019,
..., neutral, and intrados sides. HR6W Extrados side Neutral side Intrados side Heat A: Comp. bending 200 m 200 m 200 m Heat B: Normal bending 200 m 200 m 200 m Figure 8: Optical micrographs at the center portion of wall thickness after compression bending and normal bending specimens (As-bent) HR6W Extrados...
Abstract
View Papertitled, Establishing Induction Bending Technique for Ni-Based Alloy HR6W Large Piping
View
PDF
for content titled, Establishing Induction Bending Technique for Ni-Based Alloy HR6W Large Piping
In order to establish a induction bending technique for Ni-based alloy HR6W large pipe, induction bending test was conducted on HR6W, which is a piping candidate material of 700°C class Advanced Ultra-Super Critical. In this study, a tensile bending test in which tensile strain was applied and a compression bending test in which compression strain was applied to the extrados side of the pipe bending part. As the results of these two types of induction bending tests, it was confirmed that a predetermined design shape could be satisfied in both bending tests. In addition, the wall thickness of the pipe was equal to or greater than that of the straight pipe section in compression bending. Therefore, if compression bending is used, it is considered unnecessary to consider the thinning amount of the bent portion in the design. Next, penetrant test(PT) on the outer surface of the bending pipes were also confirmed to be acceptable. Subsequently, metallographic samples were taken from the outer surface of the extrados side, neutral side and intrados side of the pipe bending portion. Metallographic observation confirmed that the microstructures were normal at all the three selected positions. After induction bending, the pipe was subjected to solution treatment. Thereafter, tensile tests and creep rupture tests were carried out on samples that were cut from the extrados side, neutral side and intrados side of the pipe bending portion. Tensile strength satisfied the minimum tensile strength indicated in the regulatory study for advanced thermal power plants report of Japan. Each creep rupture strength was the almost same regardless of the solution treatment conditions. From the above, it was possible to establish a induction bending technique for HR 6W large piping.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry...
Abstract
View Papertitled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
View
PDF
for content titled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
1