Skip Nav Destination
Close Modal
Search Results for
nickel-chromium-cobalt-molybdenum-titanium-aluminum alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Date
Availability
1-2 of 2 Search Results for
nickel-chromium-cobalt-molybdenum-titanium-aluminum alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 159-170, October 15–18, 2024,
... with a higher initial flaw density. which led to a lower ductility for the specimen. creep flaws creep strength creep testing ductility heat treatment laser powder bed fusion microstructure nickel-chromium-cobalt-molybdenum-titanium-aluminum alloys nickel-chromium-iron-niobium-molybdenum alloys...
Abstract
View Paper
PDF
The Advanced Materials and Manufacturing Technologies (AMMT) program is aiming at the accelerated incorporation of new materials and manufacturing technologies into nuclear-related systems. Complex Ni-based components fabricated by laser powder bed fusion (LPBF) could enable operating temperatures at T > 700°C in aggressive environments such as molten salts or liquid metals. However, available mechanical properties data relevant to material qualification remains limited, in particular for Ni-based alloys routinely fabricated by LPBF such as IN718 (Ni- 19Cr-18Fe-5Nb-3Mo) and Haynes 282 (Ni-20Cr-10Co-8.5Mo-2.1Ti-1.5Al). Creep testing was conducted on LPBF 718 at 600°C and 650°C and on LPBF 282 at 750°C. finding that the creep strength of the two alloys was close to that of wrought counterparts. with lower ductility at rupture. Heat treatments were tailored to the LPBF-specific microstructure to achieve grain recrystallization and form strengthening γ' precipitates for LPBF 282 and γ' and γ" precipitates for LPBF 718. In-situ data generated during printing and ex-situ X-ray computed tomography (XCT) scans were used to correlate the creep properties of LPBF 282 to the material flaw distribution. In- situ data revealed that spatter particles are the potential causes for flaws formation in LPBF 282. with significant variation between rods based on their location on the build plate. XCT scans revealed the formation of a larger number of creep flaws after testing in the specimens with a higher initial flaw density. which led to a lower ductility for the specimen.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 699-711, October 15–18, 2024,
... due to a high elasticity and diffusivity of the lattice, which promotes solubility of other elements [2] [3]. The matrix is primarily nickel that is solid-solution strengthened by approximately 20 wt% chromium, 20 wt% cobalt, and 10 wt% molybdenum [3]. The main strengthener in nickel superalloys...
Abstract
View Paper
PDF
Advanced power generation systems, including advanced ultrasupercritical (A-USC) steam and supercritical carbon dioxide (sCO 2 ) plants operating above 700°C, are crucial for reducing carbon dioxide emissions through improved efficiency. While nickel superalloys meet these extreme operating conditions, their high cost and poor weldability present significant challenges. This study employs integrated computational materials engineering (ICME) strategies, combining computational thermodynamics and kinetics with multi-objective Bayesian optimization (MOBO), to develop improved nickel superalloy compositions. The novel approach focuses on utilizing Ni 3 Ti (η) phase strengthening instead of conventional Ni 3 (Ti,Al) (γ’) strengthening to enhance weldability and reduce costs while maintaining high-temperature creep strength. Three optimized compositions were produced and experimentally evaluated through casting, forging, and rolling processes, with their microstructures and mechanical properties compared to industry standards Nimonic 263, Waspaloy, and 740H. Weldability assessment included solidification cracking and stress relaxation cracking tests, while hot hardness measurements provided strength screening. The study evaluates both the effectiveness of the ICME design methodology and the practical potential of these cost-effective η-phase strengthened alloys as replacements for traditional nickel superalloys in advanced energy applications.