Skip Nav Destination
Close Modal
Search Results for
nickel superalloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 133 Search Results for
nickel superalloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
... for refurbishment. blade refurbishment chemical composition creep test heat treatment microstructure NiCoCrAlYHf coating oxidation coatings single crystal nickel superalloys Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25...
Abstract
View Paper
PDF
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 379-390, October 21–24, 2019,
... Abstract Cast nickel-based superalloys used as structural materials for gas turbine parts need to withstand high temperatures and dynamic mechanical loads. When in contact with ambient air, the formation of protective oxide scales causes a depletion of γ’-precipitates in the surface-near region...
Abstract
View Paper
PDF
Cast nickel-based superalloys used as structural materials for gas turbine parts need to withstand high temperatures and dynamic mechanical loads. When in contact with ambient air, the formation of protective oxide scales causes a depletion of γ’-precipitates in the surface-near region and leaves a weakened microstructure. This environmentally based degradation of the material might be accelerated under cyclic thermal exposure. In this paper, the cyclic oxidation behavior of two cast nickel-based superalloys and one single crystalline variant are investigated: C1023, CM-247 LC and M-247 SX. Exposure tests were carried out under both isothermal and cyclic conditions in air at 850 °C, 950 °C and 1050 °C for times up to 120 h to investigate the impact of thermal cycling. The differences in oxidation mechanisms are analyzed phenomenologically via light and electron microscopy and brought in correlation with the oxidation kinetics, determined based on net mass change and depletion zone growth. An assessment of the impact of precipitation loss on local mechanical strength is attempted via nano-indentation method. The found relations can be transferred onto an acceleration of crack growth under creep-fatigue and thermo-mechanical fatigue conditions.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 459-467, October 22–25, 2013,
... caused by CCS and achieve a net efficiency of 45%. Increase in the steam temperature up to 750°C requires application of new advanced materials. Precipitation hardened nickel-based superalloys with high creep-rupture strength at elevated temperatures are promising candidates for new generation of steam...
Abstract
View Paper
PDF
Carbon Capture and Storage (CCS) has become promising technology to reduce CO 2 emissions. However, as a consequence of CCS installation, the electrical efficiency of coal fired power plant will drop down. This phenomenon requires increase in base efficiency of contemporary power plants. Efficiency of recent generation of power plants is limited mainly by maximum live steam temperature of 620°C. This limitation is driven by maximal allowed working temperatures of modern 9–12% Cr martensitic steels. Live steam temperatures of 750°C are needed to compensate the efficiency loss caused by CCS and achieve a net efficiency of 45%. Increase in the steam temperature up to 750°C requires application of new advanced materials. Precipitation hardened nickel-based superalloys with high creep-rupture strength at elevated temperatures are promising candidates for new generation of steam turbines operating at temperatures up to 750°C. Capability to manufacture full-scale forged rotors and cast turbine casings from nickel-based alloys with sufficient creep-rupture strength at 750°C/105 hours is investigated. Welding of nickel-based alloys in homogeneous or heterogeneous combination with 10% Cr martensitic steel applicable for IP turbine rotors is shown in this paper. Structure and mechanical properties of prepared homogeneous and heterogeneous weld joints are presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1151-1162, October 22–25, 2013,
...)) are given through the use of the SEM/EPMA - EDS + MPST in this contribution. Examples on phase quantifications of some nickel base superalloys (Nimonic263, Inconel 740 and Rhenium-containing alloys) are also shown to reveal the feasibility of its use in determining phase chemistries of precipitated...
Abstract
View Paper
PDF
An approach to phase analysis called multiphase separation technology (MPST) has been developed to determine phase chemistries of precipitated particles with sizes visible under SEM/EPMA observations based on the data from the conventional EDS measurements on bulk steel/alloy material samples. Quite accurate results from its applications have successfully been demonstrated by comparisons of SEM/EPMA - EDS + MPST with some other currently available means, for instance, chemical extractions (CA), TEM-EDS, AP-FIM and Thermo-Calc. etc. Applied examples regarding the relations of change in phase parameters including type, composition, volume fraction, size and distribution of the precipitated particles with material qualities, creep rupture lives, property stabilities, property recovery and boiler tube failures for some advanced heat resistant steels (P92, Super304H, HR3C, TP347HFG (H)) are given through the use of the SEM/EPMA - EDS + MPST in this contribution. Examples on phase quantifications of some nickel base superalloys (Nimonic263, Inconel 740 and Rhenium-containing alloys) are also shown to reveal the feasibility of its use in determining phase chemistries of precipitated particles under different measurement conditions. Practical applications of this combined technology to the material quality control and assessments, processing parameter improvements, as well as fracture/failure analyses of high temperature components have shown that this technology is quite convenient and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 181-189, October 11–14, 2016,
... Abstract The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep...
Abstract
View Paper
PDF
The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep properties of forged samples with seven different compositions were examined. No significant differences were observed in the creep rate versus time curves of the samples, of which contents of magnesium, zirconium, manganese and sulfur were varied. In contrast, the curves of phosphorus-added samples showed very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed that there were fine precipitates consisting of phosphorus and niobium at the grain boundaries. The significant suppression of the creep deformation of phosphorus-added sample may be attributed to the grain boundary strengthening caused by the fine grain boundary precipitates.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... Abstract A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design...
Abstract
View Paper
PDF
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 535-545, October 21–24, 2019,
... Abstract In this study, fatigue crack propagation behavior at lower temperature in single crystal nickel-base superalloys was investigated experimentally and analytically. Four types of compact specimens with different combinations of crystal orientations in loading and crack propagation...
Abstract
View Paper
PDF
In this study, fatigue crack propagation behavior at lower temperature in single crystal nickel-base superalloys was investigated experimentally and analytically. Four types of compact specimens with different combinations of crystal orientations in loading and crack propagation directions were prepared, and fatigue crack propagation tests were conducted at room temperature and 450°C. It was revealed in the experiments that the crack propagated in the shearing mode at room temperature, while the cracking mode transitioned from the opening to shearing mode at 450°C. Both the crack propagation rate and the transition behavior were strongly influenced by the crystallographic orientations. To interpret these experimental results, crystal plasticity finite element analysis was carried out, taking account some critical factors such as elastic anisotropy, crystal orientations, 3-D geometry of the crack plane and the activities of all 12 slip systems in the FCC crystal. A damage parameter based on the slip plane activities derived from the crystal plasticity analysis could successfully rationalize the effect of primary and secondary orientations on the crystallographic cracking, including the crack propagation paths and crack propagation rates under room temperature. The proposed damage parameter could also explain the transition from the opening to crystallographic cracking observed in the experiment under 450°C.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 621-627, October 21–24, 2019,
... far superior creep ductility. These results suggest that the presence of the eta phase may not be deleterious to creep ductility, and in fact, may enhance it. creep ductility creep performance creep test grain boundaries microstructure wrought nickel-base superalloys Joint EPRI...
Abstract
View Paper
PDF
In wrought nickel-base alloys used at elevated temperatures for extended periods of time, it is commonly observed that unwanted phases may nucleate and grow. One such phase is the eta phase, based on Ni 3 Ti, which is a plate-shaped precipitate that nucleates at the grain boundaries and grows at the expense of the strengthening gamma prime phase. In order to study the effects of eta phase on creep performance, Alloy 263 was modified to contain 3 different microstructures: standard (contains gamma prime); aged (contains gamma prime and eta); and modified (contains only eta and no gamma prime). These microstructures were then creep tested in the range of 973-1123 K (700-850°C). An extensive test matrix revealed that the eta-only modified alloy had creep rupture strengths within 10% of the standard alloy even though this alloy had no strengthening gamma prime precipitates. It also exhibited superior creep ductility. A preliminary test matrix on the aged material containing eta and gamma prime prior to the creep tests revealed that the performance of this microstructure was generally between that of the standard alloy (best) and the eta-only alloy (worst). The aged material exhibited far superior creep ductility. These results suggest that the presence of the eta phase may not be deleterious to creep ductility, and in fact, may enhance it.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1060-1068, October 21–24, 2019,
... Abstract A new nickel-base superalloy GH750 has been developed as boiler tube of advanced ultrasupercritical (A-USC) power plants at temperatures about and above 750°C in China. This paper researched the weld solidification of GH750 filler metal, microstructure development and property of GH750...
Abstract
View Paper
PDF
A new nickel-base superalloy GH750 has been developed as boiler tube of advanced ultrasupercritical (A-USC) power plants at temperatures about and above 750°C in China. This paper researched the weld solidification of GH750 filler metal, microstructure development and property of GH750 welded joint by gas tungsten arc weld. Liquid fraction and liquid composition variation under non-equilibrium state were calculated by thermo-dynamic calculation. The weld microstructure and the composition in the dendrite core and interdendritic region were analyzed by SEM(EDX) in detail. The investigated results show that there is an obvious segregation of precipitation-strengthening elements during the weld solidification. Titanium and Niobium are the major segregation elements and segregates in the interdendritic region. It was found that the changing tendency of the elements’ segregation distribution during the solidification of GH750 deposit metal is agree with the thermodynamic calculation results. Till to 3,000hrs’ long exposure at 750°C and 800°C, in comparison with the region of dendrite core of solidification microstructure, not only the coarsening and the accumulation of γʹ particles are remarkable in the interdendritic region, but also the small quantity of the blocky and needle like η phases from. The preliminary experimental results indicate that the weakening effect of creep-rupture property of the welded joint is not serious compared with GH750 itself.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1025-1037, October 22–25, 2013,
... Abstract The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than...
Abstract
View Paper
PDF
The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC) boiler, which is the latest boiler design, currently under development. As with all high nickel alloys, welding of alloy 740H can be very challenging, even to an experienced welder. Weldability challenges are compounded when considering that the alloy may be used in steam headers, where critical, thick-section and stub-to-header weld joints are present. This paper is intended to describe the proper procedures developed over years of study that will allow for ASME code quality welds in alloy 740H with matching composition filler metals.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 47-54, October 11–14, 2016,
... the successful developments of steels within the COST 501, 522 and 536 programmes, further advances are being researched. As nickel superalloys remain an expensive option for coal power plants, there is a significant drive for improvements of 9-12% Cr steels to meet new demands. The most promising...
Abstract
View Paper
PDF
Current demands of the power generation market require components with improved materials properties. The focus is not only on the higher operation temperatures and pressures but also more frequent cycling to accommodate the energy produced from renewable sources. Following the successful developments of steels within the COST 501, 522 and 536 programmes, further advances are being researched. As nickel superalloys remain an expensive option for coal power plants, there is a significant drive for improvements of 9-12% Cr steels to meet new demands. The most promising of the potential candidates identified for 650°C application is MarBN steel (9Cr-3Co-3W-V-Nb). This paper reviews the current state of European developments on MarBN steel. Work on this alloy has been carried out for the last 5 years. Initial projects focused on development of the cast components. UK IMPACT and following INMAP projects successfully demonstrated manufacturing capabilities of large casting components. More recent collaborations aim to develop full-size boiler components and large rotor forgings as well as further examine the properties in the operating conditions (i.e. corrosion and oxidation resistance, creep-fatigue behaviour). Additionally significant focus is placed on modelling the behaviour of MarBN components, in terms of both microstructural changes and the resulting properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
... Abstract The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has...
Abstract
View Paper
PDF
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 433-440, October 21–24, 2019,
... localization microstructure evolution wrought nickel based superalloys Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31339/asm.cp.am-epri-2019p0433 Copyright © 2019 ASM...
Abstract
View Paper
PDF
The morphological evolution of secondary γ′ precipitates under the coarsening process was investigated for commercial wrought Ni-based superalloys, which can be classified into two processes, i.e. “localization process” and “aggregation process”. The localization process was defined as a phenomenon in which cuboidal γ′ precipitates were arranged in the <100> direction for superalloys. In contrast, the aggregation process was defined as a phenomenon in which neighboring spherical γ′ precipitates coarsen while overlapping their interfaces for superalloys. All the wrought Ni-based superalloys could be classified into the above two processes based on their volume fraction and lattice misfit. The coarsening of γ′ precipitates follow the aggregation process when the misfit is smaller than 0.05%, and it follows the localization process otherwise.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1059-1070, October 22–25, 2013,
... requiring nickel-based superalloys. Cost-effective design of these systems requires the application of a variety of alloys representing a range of cost/property trade-offs. CF8C-Plus is a cast austenitic stainless steel recently developed for application in high temperatures similar to those in power plants...
Abstract
View Paper
PDF
Ultrasupercritical (USC) steam boiler and heat recovery steam generator (HRSG) technology is constantly evolving to improve efficiency and reduce emissions. Currently, temperatures are pushing beyond the capabilities of even the most advanced ferritic steels with some applications requiring nickel-based superalloys. Cost-effective design of these systems requires the application of a variety of alloys representing a range of cost/property trade-offs. CF8C-Plus is a cast austenitic stainless steel recently developed for application in high temperatures similar to those in power plants (600 - 900 °C) with creep strength comparable to several superalloys. This makes it an attractive alternative for those expensive alloys. EPRI, with assistance from PCC subsidiaries Special Metals and Wyman Gordon Pipes and Fittings, has produced and characterized two pipe extrusions nominally 5.25 inch OD x 0.5 inch wall thickness and 6 inch OD x 0.75 inch wall (13.3 x 1.3 cm and 15.2 x 1.9 cm), each about 1000 lbs, to continue to assess the feasibility of using a wrought version of the alloy in power piping and tubing applications. The mechanical properties from these extrusions show performance in the same population as earlier forging trials demonstrating capability exceeding several austenitic stainless steels common to the industry. Creep-rupture performance in these extrusions continues to be competitive with nickel-based superalloys.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated...
Abstract
View Paper
PDF
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 535-551, October 25–28, 2004,
...-of-the-art and material needs for bolting and casing applications in USC steam turbines was performed to define and prioritize requirements for the next-generation USC turbines. For bolting, several potentially viable nickel-base superalloys were identified for service at 760°C, with the major issues being...
Abstract
View Paper
PDF
A study is being conducted on turbine materials for use in ultra-supercritical (USC) steam power plants, with the objective of ensuring no material-related impediments regarding maximum temperature capabilities and the ability to manufacture turbine components. A review of the state-of-the-art and material needs for bolting and casing applications in USC steam turbines was performed to define and prioritize requirements for the next-generation USC turbines. For bolting, several potentially viable nickel-base superalloys were identified for service at 760°C, with the major issues being final material selection and characterization. Factors limiting inner casing material capabilities include casting size/shape, ability to inspect for discontinuities, stress rupture strength, and weldability for fabrication and repairs. Given the need for precipitation-strengthened nickel-base alloys for the inner casing at 760°C, the material needs are two-fold: selection/fabrication-related and characterization. The paper provides background on turbine components and reviews the findings for bolting and casing materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 488-495, October 21–24, 2019,
... creep cracks grain boundary hardness nickel superalloys oxidation assisted cracking uniaxial constant load test voids Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org...
Abstract
View Paper
PDF
This study aims to examine the effects of grain boundary oxidation and creep on crack initiation and fracture behaviors in cold worked surface layer, under static tensile stresses in air. To determine these effects in relation to percent cold work and hardness scale, cold-rolled plates with a reduction ratios between 10% and 50% were prepared. Uniaxial constant load (UCL) tests were conducted at elevated temperature in air using smooth round bar specimen. UCL tests with a load of 0.9σy (926MPa) at 550°C show that rupture time for all cold- rolled materials were shorter than that of as-received material. From cross-sectional observation after UCL testing, surface crack at grain boundary and voids were observed in as-received material, whereas creep cracks were also observed in cold-rolled materials. This implied that crack initiation was assisted by cold working. Comparing test results with a load reduced to 0.8σy (823MPa), difference of rupture time was expected as a factor of 5 for as-received material, and measured as 2-3 for cold-rolled materials. It was suggested that cold worked layer was more sensitive to creep than base metal.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1027-1041, October 25–28, 2004,
.... In the present paper, we present our work on the development of reliable thermodynamic databases for nickel-based superalloys and iron alloys. We first briefly describe the methodology of developing these databases and then discuss some specific examples using the databases. With the aid of these examples...
Abstract
View Paper
PDF
Materials are developed and improved by adjusting both the alloy chemistry and the processing conditions to achieve desired microstructures and properties. Traditionally, these improvements have been made by a slow and labor-intensive series of experiments. But it is now possible to replace this expensive trial and error process by carrying out only a few ‘key’ experiments in conjunction with thermodynamic calculations. These calculations are powerful tools for alloy design, enabling improvement in the selection of alloy chemistry and the parameters used for fabrication steps such as heat treatments. In order to have the utmost confidence in the results obtained from the calculations, it is essential to have high quality thermodynamic databases. Such databases can be used not only in phase equilibrium calculations but also as the critical input for further kinetic simulations. In the present paper, we present our work on the development of reliable thermodynamic databases for nickel-based superalloys and iron alloys. We first briefly describe the methodology of developing these databases and then discuss some specific examples using the databases. With the aid of these examples, the usefulness of thermodynamic databases in aiding the development of advanced materials is discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 371-381, October 22–25, 2013,
... alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta. aluminized ternary Ni-Al-X alloys corrosive attacks diffusion mechanical properties microstructural evolution nickel-based superalloys oxidation secondary reaction zones turbine blades...
Abstract
View Paper
PDF
Coatings are an essential part of the materials system to protect the turbine blades from oxidation and corrosive attack during service. Inter-diffusion of alloying elements between a turbine blade substrate and their coatings is a potential concern for coated turbine blades at ever increasing operating temperatures because this can cause the formation of undesirable Secondary Reaction Zones (SRZs), which may degrade the mechanical properties of coated Ni-based superalloys. Understanding the effects of each element on the SRZ formation is essential in order to understand both the mechanism and inter-diffusion behaviour between coatings and substrates. In this research, a number of simpler aluminized ternary Ni-Al-X (where X is Co, Cr, Re, Ru or Ta) alloys were investigated in order to elucidate the separate effects of each element on the microstructural evolution, especially at the coating/substrate interface. The aluminized ternary alloys developed distinctive diffusion zones, depending on the third alloy element, ‘X’. Specifically, it has been found that both Ni-Al-Re and Ni-Al-Ta alloys developed a continuous SRZ-like diffusion layer. This diffusion zone persisted in the Ni-Al-Re alloys after high temperature exposure, indicating that Re has a stronger effect on SRZ formation than Ta.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 337-356, October 25–28, 2004,
... gaseous corrosion testing gas-tungsten arc welding iron-aluminum-chromium alloys microsegregation nickel-based superalloys oxidizing sulfidizing waterwall boiler tubes weld overlay claddings weldability httpsdoi.org/10.31399/asm.cp.am-epri-2004p0337 Copyright © 2005 ASM International® 337 338...
Abstract
View Paper
PDF
Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several types of low NOx environments. In the present study, the susceptibility of FeAlCr weld overlay claddings to hydrogen cracking was evaluated using a gas-tungsten arc welding (GTAW) process. Microsegregation of alloying elements was determined for the FeAlCr welds and compared to a currently used Ni-based superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion resistance of the coatings. It was found that although there were slight differences in the corrosion behavior of the selected FeAlCr weld coatings, all FeAlCr based alloys exhibited superior corrosion resistance to the Ni-based superalloy during exposures up to 2000 hours.
1