1-20 of 330 Search Results for

nickel based alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 867-876, October 11–14, 2016,
...-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants. AUSC power plants austenitic steel boiler efficiency corrosion resistance high-temperature oxidation nickel-based alloys...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... Research Institute, Inc. Distributed by ASM International®. All rights reserved. D. Gandy, J. Shingledecker, editors INVESTIGATIONS ON NICKEL BASED ALLOYS AND WELDS FOR A-USC APPLICATIONS Andreas Klenk, Karl Maile, Materials Testing Institute University of Stuttgart (MPA) ABSTRACT In several material...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, October 15–18, 2024,
... NICKEL-BASED ALLOYS FOR HIGH TEMPERATURE MOLTEN CHLORIDE SALT REACTOR STRUCTURAL APPLICATIONS N. Naveen Kumar,1 Sonali Ravikumar,1 Boateng Twum Donkor,2 Jie Song,3 Vishal Soni,1 Abhishek Sharma,1 Sriswaroop Dasari,4 Gopal B. Viswanathan,5 Harjot Singh,6 Qinyun Chen,7 Rajarshi Banerjee,1 Matthew...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1066-1074, October 15–18, 2024,
... Abstract Nitridation is a high-temperature material degradation issue that can occur in air and in environments containing nitrogen, ammonia, etc., and in a variety of industrial processes. The nitridation behavior of several commercial nickel- and cobalt-based alloys is reviewed in this paper...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
...-supercritical power plants creep deformation creep performance creep test design of experiments ductility eta phase strengthened nickel-base alloys microstructure scanning electron microscopy tensile test transmission electron microscopy Advances in Materials Technology for Fossil Power Plants...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... Abstract In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 888-899, October 11–14, 2016,
... Abstract Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, October 15–18, 2024,
...-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
...‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 552-558, October 25–28, 2004,
... Abstract Improving power plant efficiency through supercritical steam pressures and very high steam temperatures up to 700°C and beyond is an effective approach to reducing fuel consumption and CO2 emissions. However, these extreme steam temperatures necessitate the use of nickel-base alloys...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1476-1486, October 21–24, 2019,
...&D of A-USC components by fabricating commercial scale nickel-based alloy components and sub-assemblies that would be needed in a coal fired power plant of approximately 800 megawatts (MWe) generation capacity operating at a steam temperature of 760°C (1400°F) and steam pressure of at least 238 bar...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1132-1144, October 21–24, 2019,
... Abstract Advanced power systems that operate at temperatures higher than about 650°C will require nickel-base alloys in critical areas for pressure containment. Age-hardened alloys offer an additional advantage of reduced volume of material compared with lower strength solid solution...
Proceedings Papers

AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 886-899, August 31–September 3, 2010,
... Abstract The pursuit of reduced emissions and increased efficiency in ultra-critical steam plants has led to the investigation of systems operating at temperatures up to 720°C and pressures up to 300 bars, necessitating the use of nickel-based alloys. This study focuses on control valves...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
... Abstract In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 459-467, October 22–25, 2013,
... turbines operating at temperatures up to 750°C. Capability to manufacture full-scale forged rotors and cast turbine casings from nickel-based alloys with sufficient creep-rupture strength at 750°C/105 hours is investigated. Welding of nickel-based alloys in homogeneous or heterogeneous combination with 10...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 180-189, October 22–25, 2013,
... and subsequent approval by notified bodies. Consequently short term properties as well as time-temperature dependent properties are generated and taken into considerations. In the case of high strength γ'-strengthening nickel-base alloys investigating the creep crack behavior is also strongly recommended...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 326-335, October 11–14, 2016,
... Abstract This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 656-667, October 11–14, 2016,
... the temperature limit of 650°C, only nickel base alloys can be used. One of the most promising candidate alloys for rotor forgings subjected to steam temperatures of 700°C is Alloy 617, which was already intensively investigated. For still higher temperatures in the range of 750°C only γ‘-precipitation hardened...
Proceedings Papers

AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 303-311, August 31–September 3, 2010,
... Abstract Coal ash corrosion testing was conducted on six solution-treated nickel-based alloy plates (Alloy 617, Alloy 263, Alloy 740, Alloy 141, HR6W [45Ni-23Cr-7W], and HR35 [50Ni-30Cr-4W-Ti]) intended for advanced-USC boilers, along with conventional ferritic and austenitic stainless tubes...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, October 15–18, 2024,
...-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME...