Skip Nav Destination
Close Modal
Search Results for
nickel alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 380
Search Results for nickel alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1237-1249, October 21–24, 2019,
... developments of steel and nickel alloys for coal-fired plant to operate at temperatures in excess of 625°C. Within the UK a modified 9%Cr steel has been developed which is based on the MarBN steel first proposed by Professor Fujio Abe of NIMS Japan, and has been designated IBN-1. The steel is modified...
Abstract
View Papertitled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> for High Temperature Applications
View
PDF
for content titled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> for High Temperature Applications
To meet worldwide emission targets many Government policies either avoid the use of coal burning plant for future energy production, or restrict emissions per kilogram of coal consumed beyond the capability of most conventional plant. As a result this has accelerated current worldwide developments of steel and nickel alloys for coal-fired plant to operate at temperatures in excess of 625°C. Within the UK a modified 9%Cr steel has been developed which is based on the MarBN steel first proposed by Professor Fujio Abe of NIMS Japan, and has been designated IBN-1. The steel is modified by additions of, typically, 3% cobalt and tungsten with controlled additions of boron and nitrogen. While development of 9%Cr steels has continued since the last EPRI high temperature material conference in 2016 (Portugal), parallel developments in nickel alloy castings for even higher temperature and pressure applications have also continued. This paper summarises the latest developments in both of these material types.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 74-85, October 22–25, 2013,
... designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled. creep-fatigue interaction forging heat treatment low cycle fatigue test nickel alloys power plants protective coatings relaxation cracking rotor welding steam temperature...
Abstract
View Papertitled, NextGenPower – Demonstration and Component Fabrication of <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> and Protective Coatings for Steam Temperatures of 750°C
View
PDF
for content titled, NextGenPower – Demonstration and Component Fabrication of <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> and Protective Coatings for Steam Temperatures of 750°C
The EU NextGenPower-project aims at demonstrating Ni-alloys and coatings for application in high-efficiency power plants. Fireside corrosion lab and plants trials show that A263 and A617 perform similar while A740H outperforms them. Lab tests showed promising results for NiCr, Diamalloy3006 and SHS9172 coatings. Probe trials in six plants are ongoing. A617, A740H and A263 performed equally in steamside oxidation lab test ≤750°C while A617 and A740H outperformed A263 at 800°C; high pressure tests are planned. Slow strain rate testing confirmed relaxation cracking of A263. A creep-fatigue interaction test program for A263 includes LCF tests. Negative creep of A263 is researched with gleeble tests. A263 Ø80 - 500mm trial rotors are forged with optimized composition. Studies for designing and optimizing the forging process were done. Segregation free Ø300 and 1,000mm rotors have been forged. A263 – A263 and A293 – COST F rotor welding show promising results (A263 in precipitation hardened condition). Cast step blocks of A282, A263 and A740H showed volumetric cracking after heat treatment. New ‘as cast’ blocks of optimized composition are without cracks. A 750°C steam cycle has been designed with integrated CO 2 capture at 45% efficiency (LHV). Superheater life at ≤750°C and co-firing is modeled.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge...
Abstract
View Papertitled, <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> for High Efficiency Fossil Power Plants
View
PDF
for content titled, <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span> for High Efficiency Fossil Power Plants
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 495-506, February 25–28, 2025,
... processed using conventional methods. creep strength enhanced ferritic steel gas metal arc welding mechanical properties nickel-based super alloys nickel-chromium alloys wire arc additive manufacturing Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from...
Abstract
View Papertitled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span>
View
PDF
for content titled, Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloys</span>
Additive manufacturing is a groundbreaking manufacturing method that enables nearly lossless processing of high-value materials and produces complex components with a level of flexibility that traditional methods cannot achieve. Wire arc additive manufacturing (WAAM), utilizing a conventional welding process such as gas metal arc welding, is one of the most efficient additive manufacturing technologies. The WAAM process is fully automated and guided by CAD/CAM systems on robotic or CNC welding platforms. This paper explores the fundamental concepts and metallurgical characteristics of WAAM. It focuses primarily on the mechanical properties of printed sample structures made from P91, X20, and alloys 625 and 718 wire feedstock. The study particularly addresses the anisotropy of mechanical properties through both short-term and long-term testing, comparing these results to materials processed using conventional methods.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 888-899, October 11–14, 2016,
... Abstract Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally...
Abstract
View Papertitled, Corrosion of <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloys</span> by Supercritical CO 2
View
PDF
for content titled, Corrosion of <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloys</span> by Supercritical CO 2
Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally pressurised by flowing CO 2 , inducing hoop stresses up to 35 MPa in the tube walls. Materials tested were Haynes alloys 188, 230 and 282, plus HR120 and HR160. These alloys developed chromia scales and, to different extents, an internal oxidation zone. In addition, chromium-rich carbides precipitated within the alloys. Air aging experiments enabled a distinction between carburisation reactions and carbide precipitation as a result of alloy equilibration. The stainless steel was much less resistant to CO 2 attack, rapidly entering breakaway corrosion, developing an external iron-rich oxide scale and internal carburisation. Results are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1066-1074, February 25–28, 2025,
... Abstract Nitridation is a high-temperature material degradation issue that can occur in air and in environments containing nitrogen, ammonia, etc., and in a variety of industrial processes. The nitridation behavior of several commercial nickel- and cobalt-based alloys is reviewed in this paper...
Abstract
View Papertitled, Nitridation Resistance of Several Modern High-Temperature <span class="search-highlight">Nickel</span>- and Cobalt-Based <span class="search-highlight">Alloys</span>
View
PDF
for content titled, Nitridation Resistance of Several Modern High-Temperature <span class="search-highlight">Nickel</span>- and Cobalt-Based <span class="search-highlight">Alloys</span>
Nitridation is a high-temperature material degradation issue that can occur in air and in environments containing nitrogen, ammonia, etc., and in a variety of industrial processes. The nitridation behavior of several commercial nickel- and cobalt-based alloys is reviewed in this paper. The alloys include Haynes 230, Haynes 188, Haynes 625, Haynes 617, Haynes 214, Hastelloy X, and Haynes 233. The environments discussed are high-purity nitrogen gas between 871°C and 1250°C, 100% ammonia gas at 982°C and 1092°C, and a simulated combustion atmosphere at 982°C. The results showed that nitridation occurred in all the environments containing nitrogen. The nitridation attack was strongly influenced by the alloy compositions and the type of oxide formed (i.e., chromia or alumina), as some degree of oxidation was expected in the environments in which residual oxygen was present. Thermal cycling is briefly discussed because the integrity of protective oxides is also an important factor in resisting high-temperature oxidation and nitridation attack.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... Research Institute, Inc. Distributed by ASM International®. All rights reserved. D. Gandy, J. Shingledecker, editors INVESTIGATIONS ON NICKEL BASED ALLOYS AND WELDS FOR A-USC APPLICATIONS Andreas Klenk, Karl Maile, Materials Testing Institute University of Stuttgart (MPA) ABSTRACT In several material...
Abstract
View Papertitled, Investigations on <span class="search-highlight">Nickel</span> Based <span class="search-highlight">Alloys</span> and Welds for A-USC Applications
View
PDF
for content titled, Investigations on <span class="search-highlight">Nickel</span> Based <span class="search-highlight">Alloys</span> and Welds for A-USC Applications
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, February 25–28, 2025,
... Al-or Ti-enriched oxide as well as the unique microstructure. alloy composition corrosion test hardness microstructure molten salt corrosion molten salt reactors nickel-molybdenum-tungsten-chromium-aluminum alloys phase transformations thermal aging thermodynamic modeling Advances...
Abstract
View Papertitled, Investigation of Novel <span class="search-highlight">Nickel</span>-Based <span class="search-highlight">Alloys</span> for High Temperature Molten Chloride Salt Reactor Structural Applications
View
PDF
for content titled, Investigation of Novel <span class="search-highlight">Nickel</span>-Based <span class="search-highlight">Alloys</span> for High Temperature Molten Chloride Salt Reactor Structural Applications
An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five alloy compositions with varying Mo/W and two alloys with high tungsten modified with the addition of Al or Ti were selected and prepared. The newly developed alloys were evaluated for their response to thermal aging in the temperature range of 700 to 850 °C and corrosion in the KCl-NaCl-MgCl 2 salt under suitable conditions. Thermally aged and post-corrosion test samples were characterized to ascertain phase transformations, microstructural changes and corrosion mechanisms. Al/Ti modified alloys showed significant change in hardness after 400 hours aging at 750°C, which was found to be due to the presence of fine γ’/γ” precipitates along with plate-shaped W/Mo-rich particles. These alloys show comparable molten salt corrosion resistance as commercial alloys at 750°C for 200-hour exposures. The good corrosion behavior of these alloys may be attributed to the formation of a protective multicomponent Al-or Ti-enriched oxide as well as the unique microstructure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 235-246, October 11–14, 2016,
... Abstract In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked...
Abstract
View Papertitled, Creep and Creep Rupture Behavior of <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloys</span> for Superheaters After Cold Working
View
PDF
for content titled, Creep and Creep Rupture Behavior of <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloys</span> for Superheaters After Cold Working
In order to enable a compact design for boiler superheaters in modern thermal power plants, cold-worked tube bending is an economical option. For service metal temperatures of 700 °C and above, nickel-based alloys are typically employed. To ensure a safe operation of such cold-worked alloys, their long-term mechanical behavior has to be investigated. In general, superheater tube materials in a cold-worked state are prone to a degradation of their long-term creep behavior. To predict this degradation, sensitive experiments have to be conducted. In this publication, the effects of cold working on the long-term creep behavior of three currently used nickel-based alloys are examined. Creep and creep rupture experiments have been conducted at typical service temperature levels on nickel-based alloys, which have been cold worked to various degrees. As a result, Alloy 263 exhibits no significant influence of cold working on the creep rupture strength. For Alloy 617, an increase of creep strength due to cold working was measured. In contrast, Alloy 740 showed a severe degradation of the creep strength due to cold working. The mechanism causing the sensitivity to cold working is not yet fully understood. Various formations of carbide precipitates at the grain boundaries are believed to have a major influence. Nevertheless, the experimentally observed sensitivity should always be considered in material selection for boiler tube design.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 867-876, October 11–14, 2016,
...-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants. AUSC power plants austenitic steel boiler efficiency corrosion resistance high-temperature oxidation nickel-based alloys...
Abstract
View Papertitled, High Temperature Oxidation of Austenitic Steels and <span class="search-highlight">Nickel</span>-Based <span class="search-highlight">Alloys</span> in Steam Environment
View
PDF
for content titled, High Temperature Oxidation of Austenitic Steels and <span class="search-highlight">Nickel</span>-Based <span class="search-highlight">Alloys</span> in Steam Environment
Most effective method to increase the boiler efficiency and decrease emissions is to increase the steam temperature of modern coal-fired power plants. The increase in the steam temperature of the AUSC power plants will require higher grade heat-resistant materials to support the long-term safety and service reliability of power plants. The corrosion resistance of alloys is one of the most important factors for the application in AUSC power plants.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ...
Abstract
View Papertitled, Status of Large Scale Manufacture of <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Turbine Rotor Forgings for A-USC Steam Power Plants
View
PDF
for content titled, Status of Large Scale Manufacture of <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Turbine Rotor Forgings for A-USC Steam Power Plants
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 491-503, October 22–25, 2013,
... just don’t have enough strength, and typically have a temperature limit of around 620°C (possibly up to 650°C in the near future) in the HP environment. Therefore, material development has focused on nickel alloys. European programs such as AD700, COMTES, European 50+ and more recently, NextGen Power...
Abstract
View Papertitled, Advances in <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Casting Production for +700 °C Applications
View
PDF
for content titled, Advances in <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Casting Production for +700 °C Applications
The drive for reduced carbon dioxide emissions and improved efficiency in coal fire power plant has led to much work being carried out around the world with regards to material development to enable 700+°C steam temperature operation. At these elevated temperatures and pressures steels just don’t have enough strength, and typically have a temperature limit of around 620°C (possibly up to 650°C in the near future) in the HP environment. Therefore, material development has focused on nickel alloys. European programs such as AD700, COMTES, European 50+ and more recently, NextGen Power and Macplus, have investigated the use of nickel alloys in the steam turbine. Large castings have an important role within the steam turbine, because valves bodies and turbine casings are nearly always produced from a cast component. The geometry of these components is often complex, and therefore, the advantage of using castings for such items is that near net shapes can be produced with minimal machining. This is important, as nickel alloys are expensive, and machining is difficult, so castings offer an attractive cost benefit. Cast shapes can be more efficiently designed with regards to stress management. For example, contouring of fillet regions can help to reduce stress concentrations leads to reduced plant maintenance and casting complex shapes reduces the number of onsite fabrication welds to inspect during outage regimes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 984-993, February 25–28, 2025,
... recrystallization electron beam scattered diffraction grain boundary length density imposed mechanical energy nickel-chromium-iron alloys nuclear power generation recrystallization temperature range Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International...
Abstract
View Papertitled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Groove Welds
View
PDF
for content titled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium <span class="search-highlight">Nickel</span> <span class="search-highlight">Alloy</span> Groove Welds
Ductility dip cracking (DDC) is known to occur in highly restrained welds and structural overlays made using high chromium (Cr) nickel (Ni) based filler metals in the nuclear power generation industry, resulting in costly repairs and reworks. Previous work explored the role of mechanical energy imposed by the thermo-mechanical cycle of multipass welding on DDC formation in a highly restrained Alloy 52 filler metal weld. It was hypothesized that imposed mechanical energy (IME) in the recrystallization temperature range would induce dynamic recrystallization (DRX), which is known to mitigate DDC formation. It was not shown however that IME in the recrystallization temperature range (IMERT) induced DRX. The objective of the work is to discern if a relationship between IMERT and DRX exists and quantify the amount of DRX observed in a filler metal 52 (FM-52) groove weld. DRX was analyzed and quantified using electron beam scattered diffraction (EBSD) generated inverse poll figures (IPF), grain surface area and grain aspect ratio distribution, grain orientation spread (GOS), kernel average misorientation (KAM), and grain boundary (GB) length density. From the analysis, GOS was determined to be an unsuitable criterion for quantifying DRX in multipass Ni-Cr fusion welds. Based on the observed criteria, higher IMERT regions correlate to smaller grain surface area, larger grain boundary density, and higher grain aspect ratio, which are all symptoms of DRX. High IMERT has a strong correlation with the symptoms DRX, but due to the lack of observable DRX, creating a threshold for DRX grain size, grain aspect ratio, and GB density is not possible. Future work will aim to optimize characterization criteria based on a Ni-Cr weld with large presence of DRX.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... will be compared for INCONEL filler metals 72, 72M, 625 and 622. boilers cladding corrosion resistance erosion resistance fossil-fueled boiler tubing Inconel filler metals nickel-chromium alloys superheaters water wall tubes Joint EPRI 123HiMAT International Conference on Advances in High...
Abstract
View Papertitled, <span class="search-highlight">Nickel</span> Chromium <span class="search-highlight">Alloy</span> Claddings for Extension of Fossil-Fueled Boiler Tubing Life
View
PDF
for content titled, <span class="search-highlight">Nickel</span> Chromium <span class="search-highlight">Alloy</span> Claddings for Extension of Fossil-Fueled Boiler Tubing Life
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 35-46, October 11–14, 2016,
...) Technical Director, (2) Metallurgist, (3) General Manager Abstract: The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant...
Abstract
View Papertitled, Next Generation Casting Materials for Fossil Power Plants
View
PDF
for content titled, Next Generation Casting Materials for Fossil Power Plants
The necessity to reduce carbon dioxide emissions of new fossil plant, while increasing net efficiency has lead to the development of not only new steels for potential plant operation of 650°C, but also cast nickel alloys for potential plant operation of up to 700°C and maybe 750°C. This paper discusses the production of prototype MarBN steel castings for potential plant operation up to 650°C, and gamma prime strengthened nickel alloys for advanced super critical plant (A-USC) operation up to 750°C. MarBN steel is a modified 9% Cr steel with chemical concentration of Cobalt and tungsten higher than that of CB2 (GX-13CrMoCoVNbNB9) typically, 2% to 3 Co, 3%W, with controlled B and N additions. The paper will discuss the work undertaken on prototype MarBN steel castings produced in UK funded research projects, and summarise the results achieved. Additionally, within European projects a castable nickel based super alloy has successfully been developed. This innovative alloy is suitable for 700°C+ operation and offers a solution to many of the issues associated with casting precipitation hardened nickel alloys.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 690-701, October 11–14, 2016,
... temperatures up to 760°C (1400°F). Part of this effort has focused on the need for higher temperature capable materials for steam turbine components, specifically cast nickel-base superalloys such as Haynes 282 alloy. As the size of the needed components is much larger than is capable of being produced...
Abstract
View Papertitled, Development of Large Sand Casting of Haynes 282 for A-USC Turbine
View
PDF
for content titled, Development of Large Sand Casting of Haynes 282 for A-USC Turbine
The United States Department of Energy Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have led a U.S. consortium tasked with development of the materials technology necessary to build an advanced-ultra-Supercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). Part of this effort has focused on the need for higher temperature capable materials for steam turbine components, specifically cast nickel-base superalloys such as Haynes 282 alloy. As the size of the needed components is much larger than is capable of being produced by vacuum casting methods typically used for these alloys, an alternative casting process has been developed to produce the required component sizes in Haynes 282 alloy. The development effort has progressed from production of sub-scale sand castings to full size sand and centrifugal castings. The aim of this work was to characterize the microstructure and properties of a nickel alloy 282 casting with section size and casting weights consistent with a full sized component. A 2720 kg (6000 lbs.) nickel alloy 282 sand casting was produced and heat treated at MetalTek International. The casting was a half valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section thicknesses. Further analysis of the microstructure was carried out using light microscopy (LM), scanning electron microscopy (SEM), and X-ray spectroscopy (EDS). The paper also presents the mechanical properties obtained from the various sections of the large casting.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 202-212, October 11–14, 2016,
...-supercritical power plants creep deformation creep performance creep test design of experiments ductility eta phase strengthened nickel-base alloys microstructure scanning electron microscopy tensile test transmission electron microscopy Advances in Materials Technology for Fossil Power Plants...
Abstract
View Papertitled, Design, Creep Performance and Deformation Behavior of an Eta-Phase Strengthened <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloy</span> for A-USC Power Plant Applications
View
PDF
for content titled, Design, Creep Performance and Deformation Behavior of an Eta-Phase Strengthened <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloy</span> for A-USC Power Plant Applications
By utilizing computational thermodynamics in a Design of Experiments approach, it was possible to design and manufacture nickel-base superalloys that are strengthened by the eta phase (Ni3Ti), and that contain no gamma prime (Ni3Al,Ti). The compositions are similar to NIMONIC 263, and should be cost-effective, and have more stable microstructures. By varying the aging temperature, the precipitates took on either cellular or Widmanstätten morphologies. The Widmanstätten-based microstructure is thermally stable at high temperatures, and was found to have superior ductility, so development efforts were focused on that microstructure. High temperature tensile test and creep test results indicated that the performance of the new alloys was competitive with NIMONIC 263. SEM and TEM microscopy were utilized to determine the deformation mechanisms during creep.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, February 25–28, 2025,
...-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation...
Abstract
View Papertitled, Steel Casting Process Development: Advanced Processing of Martensitic 9-10% Cr Steels and <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloy</span> 625
View
PDF
for content titled, Steel Casting Process Development: Advanced Processing of Martensitic 9-10% Cr Steels and <span class="search-highlight">Nickel</span>-Base <span class="search-highlight">Alloy</span> 625
The voestalpine foundry group, operating at locations in Linz and Traisen, Austria, specializes in heavy steel casting components ranging from 1 to 200 tons for power generation, oil and gas, chemical processing, and offshore applications. Their manufacturing expertise encompasses high-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation and simulation for all thermal processes, from material development through final casting. The foundries’ comprehensive capabilities include specialized melting, molding, heat treatment, non-destructive testing, and fabrication welding, with particular emphasis on joining dissimilar cast, forged, and rolled materials. Looking toward future innovations, the group is exploring additive manufacturing for mold production and robotic welding systems to enhance shaping and surface finishing capabilities.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650 steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680 steam temperature, 984G iron-nickel alloy used for 680 steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1...
Abstract
View Papertitled, Status of the Power Industry in China and Overall Progress for A-USC Technology
View
PDF
for content titled, Status of the Power Industry in China and Overall Progress for A-USC Technology
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 429-440, February 25–28, 2025,
... was used to study the behavior of components for advanced ultra-supercritical (A-USC) plants made from nickel alloys at 725 °C under both static and fluctuating conditions. Due to recent changes in the operation modes of existing coal-fired power plants, the test loop was modified to continue operating...
Abstract
View Papertitled, Component Testing under Cyclic Operation Modes for Martensitic Steels and Ni-based <span class="search-highlight">Alloys</span> in the HWT3 Power Plant Test Loop
View
PDF
for content titled, Component Testing under Cyclic Operation Modes for Martensitic Steels and Ni-based <span class="search-highlight">Alloys</span> in the HWT3 Power Plant Test Loop
This paper reports on the latest in a series of projects aiming at the qualification of new and proven materials in components under a severe service environment. In the initial stages of the project (HWT I & HWT II), a test loop at Unit 6 of the GKM Power Plant in Mannheim was used to study the behavior of components for advanced ultra-supercritical (A-USC) plants made from nickel alloys at 725 °C under both static and fluctuating conditions. Due to recent changes in the operation modes of existing coal-fired power plants, the test loop was modified to continue operating the existing nickel components in the static section while applying thermal cycles in a different temperature range. HR6W pipes and valves were added to the bypass of the static section, and all components in the cyclic section were replaced with P92, P93, and HR6W components. The test loop achieved approximately 9000 hours of operation and around 800 cycles with holding times of 4 and 6 hours. After dismantling the loop, nondestructive and destructive examinations of selected components were conducted. The accompanying testing program includes results from thermal fatigue, fatigue, thermal shock, and long-term creep tests, focusing on the behavior of base materials and welds, particularly for HR6W, P92, P93, and other nickel-based alloys. Additionally, test results on dissimilar welds between martensitic steel P92 and nickel alloys A617 and HR6W are presented. Numerical assessments using standardized and numerical lifetime estimation methods complement the investigations. This paper provides insights into the test loop design and operational challenges, material behavior, and lifetime, including advanced numerical simulations and operational experiences with valves, armatures, piping, and welds.
1