Skip Nav Destination
Close Modal
Search Results for
multiaxial test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 37
Search Results for multiaxial test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part...
Abstract
View Papertitled, Investigations on Nickel Based Alloys and Welds for A-USC Applications
View
PDF
for content titled, Investigations on Nickel Based Alloys and Welds for A-USC Applications
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
... of multiaxiality on each material response. In the last few years, a lot of efforts have also been consented to combine physical aspects of damage with phenomenological constitutive equations. The analysis of the evolution of the microstructure during creep, fatigue or creep-fatigue tests with help of Transmission...
Abstract
View Papertitled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical Fossil Plants
View
PDF
for content titled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical Fossil Plants
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 873-884, February 25–28, 2025,
.... MULTIAXIAL TESTS To develop creep life prediction models for structures, it is important to explore tests with a stress gradient and a well-defined multiaxial state of stress. Circumferentially notched bars are a convenient structural feature since they can be tested in a uniaxial load frame and provide...
Abstract
View Papertitled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part I, Structural Response
View
PDF
for content titled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part I, Structural Response
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of simple Design by Formula rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. The metallurgical findings from the selected tests are the focus of the Part II paper. The association of performance with notch geometry, weld strength, and other potential contributing factors will be highlighted with a primary objective of informing the reader of the variability, and heat-specific behavior that is observed among this class of alloys widely used in modern thermal fleet components and systems.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 344-350, October 22–25, 2013,
... has to assure such conditions. 344 The current work is dealing with presentation of the experimental approach for blade material testing taking into account multiaxial loading conditions and development of testing equipment for high cycle fatigue tests at temperatures up to 700°C under superheated...
Abstract
View Papertitled, High Cycle Fatigue Properties of Steam Turbine Materials at High Temperature Under Superheated Steam Conditions
View
PDF
for content titled, High Cycle Fatigue Properties of Steam Turbine Materials at High Temperature Under Superheated Steam Conditions
Increasing demand for reliable design of all kinds of structures requires materials properties evaluated under the conditions as close to real service conditions as possible. Presently resolved project dealing with development of new turbine blades geometry requires better understanding of the material behavior under service conditions. Service conditions of turbine blades are cyclic loading at high temperatures under superheated steam conditions and complex mechanical loading. There are not commercially available testing systems providing such functionality and thus the system allowing samples testing under considered conditions was developed. The system allows cyclic loading at temperatures up to 650°C under superheated steam conditions. Typical blade steel is investigated here and experimental approach considering complex mechanical loading as well as thermal and corrosion is shown here. The results of high cycle fatigue tests in superheated steam corrosive environment are shown here.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1313-1319, February 25–28, 2025,
... steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance...
Abstract
View Papertitled, Modeling-Based Design and Optimization of a Gradient Composite Transition Joint
View
PDF
for content titled, Modeling-Based Design and Optimization of a Gradient Composite Transition Joint
An innovative additively manufactured gradient composite transition joint (AM-GCTJ) has been designed to join dissimilar metals, to address the pressing issue of premature failure observed in conventional dissimilar metal welds (DMWs) when subjected to increased cyclic operating conditions of fossil fuel power plants. The transition design, guided by computational modeling, developed a gradient composite material distribution, facilitating a smooth transition in material volume fraction and physical properties between different alloys. This innovative design seeks to alleviate structural challenges arising from distinct material properties, including high thermal stress and potential cracking issues resulting from the thermal expansion mismatch typically observed in conventional DMWs. In this study, we investigated the creep properties of transition joints comprising Grade 91 steel and 304 stainless steel through a combination of simulations and creep testing experiments. The implementation of a gradient composite design in the plate transition joint resulted in a significant enhancement of creep resistance when compared to the baseline conventional DMW. For instance, the creep rupture life of the transition joint was improved by > 400% in a wide range of temperature and stress testing conditions. Meanwhile, the failure location shifted to the base material of Grade 91 steel. Such enhancement can be primarily attributed to the strong mechanical constraint facilitated by the gradient composite design, which effectively reduced the stresses on the less creep-resistant alloy in the transition zone. Beyond examining plate joints, it is crucial to assess the deformation response of tubular transition joints under pressure loading and transient temperature conditions to substantiate and demonstrate the effectiveness of the design. The simulation results affirm that the tubular transition joint demonstrates superior resistance compared to its counterpart DMW when subjected to multiaxial stresses in tubular structures. In addition, optimization of the transition joint’s geometry dimensions has been conducted to diminish the accumulated deformation and enhance the service life. Lastly, the scalability and potential of the innovative transition joints for large-diameter pipe applications are addressed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 370-378, October 21–24, 2019,
...) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various...
Abstract
View Papertitled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
View
PDF
for content titled, A Summary of 10 Years Research on Grade 91 and Grade 92 Steel
In response to the strong needs for the life assessment of various components in fossil power plants, studies on Grade 91 and Grade 92 steels have been jointly performed by EPRI and CRIEPI for a last decade. These studies have been covering the effects of load variation (creep- fatigue) and stress multiaxiality as well as the behavior under uniaxial creep conditions. Based on abundant test data accumulated in this period and associated analytical evaluation, approaches based on inelastic strain energy have been developed for accurately assessing creep damage and failure lives under various conditions. The essence of these efforts is presented in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1282-1293, October 21–24, 2019,
... multiaxiality (expressed by the Triaxiality Factor, TF) is high. As the creep continues, the shape of the grain boundary becomes simple; that is, close to a straight line. It is known that the grain boundary is fractal. The complexity of the fractal is represented by the fractal dimension. Therefore, we...
Abstract
View Papertitled, Study on Fractal Dimension of Grain Boundary as Creep Damage Index of Modified 9Cr-1Mo Steel
View
PDF
for content titled, Study on Fractal Dimension of Grain Boundary as Creep Damage Index of Modified 9Cr-1Mo Steel
Type IV creep damage of high chromium steel is a problem in thermal power plants and a method of evaluating remaining life is required. Type IV creep damage is characterized by many voids that initiate in the weldment fine grain heat affected zone (FGHAZ), where the stress multiaxiality (expressed by the Triaxiality Factor, TF) is high. As the creep continues, the shape of the grain boundary becomes simple; that is, close to a straight line. It is known that the grain boundary is fractal. The complexity of the fractal is represented by the fractal dimension. Therefore, we considered that the fractal dimension of the grain boundary in FGHAZ could be an indication of creep damage and studied its change as creep proceeded. First, creep tests were conducted to produce damaged materials, and their fractal dimensions were measured. Next, FEM analysis was conducted to obtain the distribution of the principal stress, TF, and creep strain of the observed surface. The distribution of creep damage was obtained by the time fraction rule. The results of this evaluation confirmed that the fractal dimension of the grain boundary decreases with creep time and that the principal stress and TF affect it.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
... (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors...
Abstract
View Papertitled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
View
PDF
for content titled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 607-614, October 22–25, 2013,
... that there was no large effect of multiaxiality of stress on the growth of M23C6 in Gr.911 weldment [9]. The testing temperature was 600oC for the Gr.911 weldment while the result of Fig.8 was obtained at 650oC. Therefore, the effect of multiaxiality of stress on the growth of M23C6 may be visible at higher temperature...
Abstract
View Papertitled, Effect of Stress State on Microstructural Change during Creep in Grade 92 Steel Welded Joint
View
PDF
for content titled, Effect of Stress State on Microstructural Change during Creep in Grade 92 Steel Welded Joint
In order to clarify the effect of stress state on microstructural changes during creep, the microstructure was observed in the central part of the cross section of the fine-grained heat-affected zone (FGHAZ) and in the surface region of the FGHAZ in Gr.92 steel welded joint. Creep tests were performed under constant load in air at 650°C, using cross-weld specimens. The creep strength of welded joint was lower than that of base metal. Type IV fracture occurred in the long-term. Creep voids were detected in the FGHAZ after the fracture. Number of creep voids was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. It was checked the multiaxiality of stress during creep was higher in the central part of the cross section of the FGHAZ than in the surface region of the FGHAZ. The recovery of dislocation structure occurred after creep in the base metal and the FGHAZ. Mean subgrain size increased with increasing time to rupture. However, there was no difference of change of subgrain size during creep in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ. The growth of M 23 C 6 carbide and MX carbonitrides was observed during creep in the base metal and the FGHAZ. Laves phase precipitation occurred during creep. There was no difference of the change of mean diameter of MX carbonitrides in the central part of the cross section of the FGHAZ and in the surface region of the FGHAZ after creep. However, the growth rate of M 23 C 6 carbide in the FGHAZ was much higher in the central part of the cross section than in the surface region.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 530-553, August 31–September 3, 2010,
... is dependence on specimen thickness. Prager (4) tested 2.25Cr 1Mo cross-weld samples and found a strong positive effect of specimen size on rupture strength. Constraint and multiaxiality effects associated with heterogeneous properties mean that the weakest uniaxial material properties are difficult...
Abstract
View Papertitled, Life Assessment of High Temperature Welded Components
View
PDF
for content titled, Life Assessment of High Temperature Welded Components
The paper describes methods for practical high temperature weldment life assessment, and their application to the analysis of notable high energy piping weldment failures and interpretation of cross-weld data. The methods described in the paper are simplified versions of full continuum damage mechanics (CDM) analysis techniques which have been developed over the last 20 years. The complexity of the CDM methods and their data requirements has been a barrier to their more widespread use. The need for simplified methods has been driven by the need for risk assessment of in-service high temperature welded piping and headers around the world, the need to connect cross-weld data to weld joint design and assessment, and in general, the need to develop suitable guidelines for evaluating the strength of weldments relative to that of base metal.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 59-81, October 3–5, 2007,
... to creep data from uniaxially loaded creep tests. Therefore an additional parameter quantifying the multiaxiality of the stress state in real components is required. The constitutive formulation of the modified Graham-Walles creep law is given below & = 10A1 mises (1 D) n1 eqm1 +10A 2 mises (1...
Abstract
View Papertitled, Consideration of Weld Behavior in Design of High Temperature Components
View
PDF
for content titled, Consideration of Weld Behavior in Design of High Temperature Components
This paper describes the steps necessary for consideration of weld behavior in order to be used in modern design procedures. Specific behavior of similar and dissimilar welds in the creep regime are described as well as procedures and criteria to be used for the assessment of welded joints.
Proceedings Papers
Simplified Methods for High Temperature Weld Design and Assessment for Steady and Cyclic Loading
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 927-939, October 3–5, 2007,
... of cyclic loading, constraint and multiaxiality in a heterogeneous joint. A common thread that runs through most high temperature weld reports and failure analyses is the existence of a relatively creep-weak zone somewhere in the joint. This paper starts with the assumption that the size and creep strength...
Abstract
View Papertitled, Simplified Methods for High Temperature Weld Design and Assessment for Steady and Cyclic Loading
View
PDF
for content titled, Simplified Methods for High Temperature Weld Design and Assessment for Steady and Cyclic Loading
Simplified or reference stress techniques are described and demonstrated for high temperature weld design and life assessment. The objective is the determination of weld life under steady and cyclic loading in boiler headers and piping systems. The analysis deals with the effect of cyclic loading, constraint and multiaxiality in a heterogeneous joint. A common thread that runs through most high temperature weld reports and failure analyses is the existence of a relatively creep-weak zone somewhere in the joint. This paper starts with the assumption that the size and creep strength of this zone are known, in addition to parent metal properties. Life prediction requires an efficient analysis technique (such as the reference stress method), which separates the structural and material problems, and does not require complex constitutive models. The approach is illustrated with a simple example of an IN617 main steam girth weld, which could be present in an advanced plant concept with 700°C steam temperature.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 748-761, October 3–5, 2007,
.... Multiaxial behaviour Life assessment methods either of conventional type or of advanced type require suitable multiaxial experiments for verification purposes. Additionally to tension/torsion or internal pressure experiments developed in the past, experiments with cruciform test pieces (Figure 12...
Abstract
View Papertitled, Improved Methods of Creep-Fatigue Life Assessment of Components
View
PDF
for content titled, Improved Methods of Creep-Fatigue Life Assessment of Components
Enhanced life assessment methods contribute to the long-term operation of high-temperature components by reducing technical risks and increasing economic benefits. This study investigates creep-fatigue behavior under multi-stage loading, including cold start, warm start, and hot start cycles, as seen in medium-loaded power plants. During hold times, creep and stress relaxation accelerate crack initiation. Creep-fatigue life can be estimated using a modified damage accumulation rule that incorporates the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage while accounting for mean stress effects, internal stress, and creep-fatigue interaction. In addition to generating advanced creep, fatigue, and creep-fatigue data, scatter band analyses are necessary to establish design curves and lower-bound properties. To improve life prediction methods, further advancements in deformation and lifetime modeling are essential. Verification requires complex experiments under variable creep conditions and multi-stage creep-fatigue interactions. A key challenge remains the development of methods to translate uniaxial material properties to multiaxial loading scenarios. Additionally, this study introduces a constitutive material model, implemented as a user subroutine for finite element applications, to simulate start-up and shut-down phases of components. Material parameter identification has been achieved using neural networks.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 653-671, October 25–28, 2004,
... components. This includes gathering creep, creep-fatigue, and crack data to establish design curves, as well as advanced modeling to predict deformation and lifetime. Complex experiments under various loading conditions and multiaxial behavior are necessary for verification. Furthermore, understanding how...
Abstract
View Papertitled, Perspectives on Improved Life Assessment Methods for New Plants
View
PDF
for content titled, Perspectives on Improved Life Assessment Methods for New Plants
New martensitic steels (9-10 CrMoNi(W)VNbN) are being developed for ultrasupercritical power plants to achieve higher efficiency and reduced environmental impact. Improved life assessment methods are crucial for the safe and economical long-term operation of these high-temperature components. This includes gathering creep, creep-fatigue, and crack data to establish design curves, as well as advanced modeling to predict deformation and lifetime. Complex experiments under various loading conditions and multiaxial behavior are necessary for verification. Furthermore, understanding how creep processes affect pre-existing defects is essential for ensuring long-term component integrity.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
... (e.g. [7 It is thus vital to appreciate the metallurgical factors which contribute to this poor creep behavior. Multiaxial testing, such as using notch bars, feature type cross-weld tests and component pressure vessel tests, has been emphasized to properly correlate the observed behavior and damage...
Abstract
View Papertitled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
View
PDF
for content titled, Assessment and Quantification of Damage in the Grade 91 Steel Partially Transformed Zone
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 169-180, October 11–14, 2016,
... Abstract 23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One...
Abstract
View Papertitled, Performance and Causes of Failure for Circumferential Welds and Welded Branch Connections for 23Cr-45Ni-7W Alloy Under Internal Pressure Conditions
View
PDF
for content titled, Performance and Causes of Failure for Circumferential Welds and Welded Branch Connections for 23Cr-45Ni-7W Alloy Under Internal Pressure Conditions
23Cr-45Ni-7W alloy (HR6W) is a material being considered for use in the high temperature parts of A-USC boilers in Japan. In order to establish an assessment method of creep damage for welded components made using HR6W, two types of internal pressure creep tests were conducted. One is for straight tubes including the circumferential weld and the other is for welded branch connections. The test results for the circumferential welds ensured that the creep rupture location within the area of the base metal, as well as the time of rupture, can be assessed by mean diameter hoop stress. On the other hand, the creep rupture area was observed in the weld metal of the branch connections, although the creep strength of Inconel filler metal 617 was higher than that of HR6W. FE analyses were conducted using individual creep strain rates of the base metal, the heat affected zone and the weld metal to clarify this difference in the failures of these two specimens. Significant stress was only produced in the weld metal as opposed to the base metal, due to the difference in creep strain rates between the welded branch connections and creep crack were initiated in the weld metal. The differences between the two failure types were assessed using the ductility exhaustion method.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 504-515, August 31–September 3, 2010,
... Abstract The extrapolation of short-term laboratory test results to predict long-term high-temperature component failure remains challenging, particularly for P91 steel due to its phase transformation during extended service and susceptibility to type IV cracking. While the NSW model...
Abstract
View Papertitled, Validation of Creep Crack Growth NSW Model in Extrapolating Short-Term Laboratory <span class="search-highlight">Test</span> Results to Longer-Term Service Component Failure Prediction
View
PDF
for content titled, Validation of Creep Crack Growth NSW Model in Extrapolating Short-Term Laboratory <span class="search-highlight">Test</span> Results to Longer-Term Service Component Failure Prediction
The extrapolation of short-term laboratory test results to predict long-term high-temperature component failure remains challenging, particularly for P91 steel due to its phase transformation during extended service and susceptibility to type IV cracking. While the NSW model successfully predicts creep crack growth bounds using short to medium-term test data (<10,000 hours), recent literature suggests materials may exhibit more brittle behavior and reduced failure strain in longer-term tests. This study examines whether the NSW model, using short-term uniaxial data, can effectively predict these long-term behavioral changes for more accurate service life assessment.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 702-713, October 22–25, 2013,
... that we proposed earlier [6, 7] was applied to the test results, and thus, the validity of this method for the actual pipes was assessed. 708 The procedure used for the life evaluation method is shown in Fig. 10. The definition of multiaxial stress TF is as follows: TF = 1 + 2 + 3 { 1 2 )2 + ( 2 3...
Abstract
View Papertitled, Fracture of Gr. 91 Steel Longitudinal Welded Pipe under Internal Pressure Creep Condition
View
PDF
for content titled, Fracture of Gr. 91 Steel Longitudinal Welded Pipe under Internal Pressure Creep Condition
An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter pipes at high temperatures. The creep test was also interrupted three times to measure hardness and voids density in the HAZ region of the outer surface of the test pipe. Results of the measurement of the hardness and voids density at the interruption did not indicate creep damage accumulation. The welded pipe suddenly ruptured with large deformation, which caused crushing damage to the surrounding facility. Type IV cracking occurred in the longitudinal welded portion of the test pipe, and the length of the crack reached 5000mm. SEM observation was carried out at the cross section of the welded portion of the test pipe and voids density was measured along the thickness direction in the HAZ region. To clarify the stress/strain distribution in the welded portion, creep analysis was conducted on the test pipe, where the materials are assumed to consist of base metal, weld metal and HAZ. After stress redistribution due to creep deformation, stress and strain concentrations were observed inside the HAZ region. Then, the authors' creep life prediction model was applied to the creep test result to examine its validity to actual size pipes. It was demonstrated that the life prediction model can evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 544-555, October 11–14, 2016,
... the experimental results of notched bar specimens for the base metal and the fine-grained heat affected zone, and has been taken into the damage model. Creep test of welded joint specimen of modified 9Cr-1Mo steel has been conducted to confirm the accuracy of the damage evaluation method. It has been concluded...
Abstract
View Papertitled, Creep Damage Evaluation Method for Welded Joints of Grade 91 Steels
View
PDF
for content titled, Creep Damage Evaluation Method for Welded Joints of Grade 91 Steels
This study is concerned with the creep damage evaluation for the welded joint of modified 9Cr-1Mo steels. A finite element prediction method based on ductility exhaustion approach has been proposed. Degradation of creep ductility under multi-axial stress state has been formulated from the experimental results of notched bar specimens for the base metal and the fine-grained heat affected zone, and has been taken into the damage model. Creep test of welded joint specimen of modified 9Cr-1Mo steel has been conducted to confirm the accuracy of the damage evaluation method. It has been concluded that the predicted trend of creep damage has good agreement with the experimental results, but the predicted rupture time become longer than the experimental results of rupture time.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 535-545, October 21–24, 2019,
... directions were prepared, and fatigue crack propagation tests were conducted at room temperature and 450°C. It was revealed in the experiments that the crack propagated in the shearing mode at room temperature, while the cracking mode transitioned from the opening to shearing mode at 450°C. Both the crack...
Abstract
View Papertitled, Crystal Plasticity Mechanism of the Transition Behavior from Opening to Shearing Cracking in a Nickel-Based Single Crystal Superalloy
View
PDF
for content titled, Crystal Plasticity Mechanism of the Transition Behavior from Opening to Shearing Cracking in a Nickel-Based Single Crystal Superalloy
In this study, fatigue crack propagation behavior at lower temperature in single crystal nickel-base superalloys was investigated experimentally and analytically. Four types of compact specimens with different combinations of crystal orientations in loading and crack propagation directions were prepared, and fatigue crack propagation tests were conducted at room temperature and 450°C. It was revealed in the experiments that the crack propagated in the shearing mode at room temperature, while the cracking mode transitioned from the opening to shearing mode at 450°C. Both the crack propagation rate and the transition behavior were strongly influenced by the crystallographic orientations. To interpret these experimental results, crystal plasticity finite element analysis was carried out, taking account some critical factors such as elastic anisotropy, crystal orientations, 3-D geometry of the crack plane and the activities of all 12 slip systems in the FCC crystal. A damage parameter based on the slip plane activities derived from the crystal plasticity analysis could successfully rationalize the effect of primary and secondary orientations on the crystallographic cracking, including the crack propagation paths and crack propagation rates under room temperature. The proposed damage parameter could also explain the transition from the opening to crystallographic cracking observed in the experiment under 450°C.
1