Skip Nav Destination
Close Modal
Search Results for
microstructure analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 436
Search Results for microstructure analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 366-376, October 3–5, 2007,
.... chromium steel creep resistance creep-rupture test ductility ladle furnace microstructural analysis vacuum degassing Advances in Materials Technology for Fossil Power Plants Proceedings from the Fifth International Conference R. Viswanathan, D. Gandy, K. Coleman, editors, p 366-376 Copyright ©...
Abstract
View Papertitled, Creep Behavior and <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of FB2 Trial Rotor Steel
View
PDF
for content titled, Creep Behavior and <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of FB2 Trial Rotor Steel
The development of new ferritic-martensitic steels for rotor applications was a primary focus of the joint research projects COST 501 and COST 522. During COST 501, multiple trial compositions of 9-10% chromium steels underwent comprehensive testing, with the COST 522 project ultimately selecting the most promising candidate, FB2, a 10% Cr steel containing cobalt and boron additions, notably without tungsten. Società delle Fucine (SdF) successfully produced an FB2 prototype rotor using a conventional manufacturing process involving ladle furnace and vacuum degassing techniques. A comprehensive creep test program was initiated to characterize the full-size component's properties, with results demonstrating consistency with laboratory material performance in both creep resistance and ductility. The extensive testing, which exceeded 30,000 hours, aimed to achieve a 15-20 MPa improvement over Grade 92, targeting 100,000 creep hours at 600°C. Complementing the mechanical testing, a parallel microstructural investigation program was launched to evaluate structural evolution and gain deeper insights into boron's role as a creep-strengthening element in advanced ferritic-martensitic steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 348-359, October 21–24, 2019,
... 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out. boiler tubing martensitic stainless steel MarBN steels microstructural...
Abstract
View Papertitled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of Service Exposed IBN1 MarBN Steel Boiler Tubing
View
PDF
for content titled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of Service Exposed IBN1 MarBN Steel Boiler Tubing
Extensive research and development has been undertaken in the UK on MarBN steels. These were first proposed by Professor Fujio Abe from NIMS in Japan. Within the UK, progress has been made towards commercialisation of MarBN-type steel through a series of Government funded industrial collaborative projects (IMPACT, IMPEL, INMAP and IMPULSE). As part of the IMPACT project, which was led by Uniper Technologies, boiler tubes were manufactured from the MarBN steel developed within the project, IBN1, and installed on the reheater drums of Units 2 and 3 of Ratcliffe-on-Soar Power Station. The trial tubes were constructed with small sections of Grade 91 tubing on either side of the IBN1 to allow direct comparison after the service exposure. This is the world’s first use of a MarBN steel on a full-scale operational power plant. In September 2018 the first tube was removed having accumulated 11,727 hours operation and 397 starts. This paper reports microstructural and oxidation analysis, that has been undertaken by Loughborough University as part of IMPULSE project, and outlines future work to be carried out.
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, February 25–28, 2025,
... Abstract The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase...
Abstract
View Papertitled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
View
PDF
for content titled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Analysis</span> of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 715-725, October 21–24, 2019,
... degradation. (4) There are no obvious corrosion elements in the oxide layers of the cracks. (5) Metallographic microstructure analysis shows that there are many intergranular cracks and carbides such as Cr-rich phase and Fe-Cr are precipitated at the grain boundaries, ultimately resulting in strain-induced...
Abstract
View Papertitled, Root Cause <span class="search-highlight">Analysis</span> of Boiler Final Superheater Bending Tube Failure
View
PDF
for content titled, Root Cause <span class="search-highlight">Analysis</span> of Boiler Final Superheater Bending Tube Failure
The broken elbow of the final superheater tube (ASME SA213 TP304H) from a coal-fired power plant was evaluated. The root causes were identified by metallographic observation, sensitization evaluation, hardness measurement, and EBSD analysis. The analysis results reached the following conclusions. (1) The tube bending was not performed in accordance with ASME Code requirements—a solid-solution heat treatment was not performed after cold working. (2) The hardness at the elbow is greater than 260 HV, exceeding the ASME code limit. (3) The sensitization was 19%, showing a performance degradation. (4) There are no obvious corrosion elements in the oxide layers of the cracks. (5) Metallographic microstructure analysis shows that there are many intergranular cracks and carbides such as Cr-rich phase and Fe-Cr are precipitated at the grain boundaries, ultimately resulting in strain-induced precipitation hardening damage.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1195-1206, February 25–28, 2025,
...., HAZ of parent, fusion-line, and weld metal). The only variables that contribute to this observed behavior are the post weld heat treatment (PWHT) cycle and the applied stress (all tests performed at 650 °C). In this work detailed microstructural analysis was undertaken to precisely define...
Abstract
View Papertitled, The Effect of Post Weld Heat Treatment on the <span class="search-highlight">Microstructure</span> and Creep Damage Susceptibility in Grade 92 Steel
View
PDF
for content titled, The Effect of Post Weld Heat Treatment on the <span class="search-highlight">Microstructure</span> and Creep Damage Susceptibility in Grade 92 Steel
Creep strength enhanced ferritic (CSEF) steels have shown the potential for creep failure in the weld metal, heat affected zone (HAZ) or fusion line. Details for this behavior have been frequently linked to metallurgical risk factors present in each of these locations which may drive the evolution of damage and subsequent failure. This work is focused on three weld samples fabricated from a commercially sourced Grade 92 steel pipe section. These weld samples were extracted from the same welded section but were reported to exhibit failure in different time frames and failure locations (i.e., HAZ of parent, fusion-line, and weld metal). The only variables that contribute to this observed behavior are the post weld heat treatment (PWHT) cycle and the applied stress (all tests performed at 650 °C). In this work detailed microstructural analysis was undertaken to precisely define the locations of creep damage accumulation and relate them to microstructural features. As part of this an automated inclusion mapping process was developed to quantify the characteristics of the BN particles and other inclusions in the parent material of the samples. It was found that BN particles were only found in the sample that had been subjected to the subcritical PWHT, not those that had received a re-normalizing heat treatment. Such micron sized inclusions are a known potential nucleation site for creep cavities, and this is consistent with the observed failure location in the HAZ of the parent in the sample where these were present. In the absence of BN inclusions, the next most susceptible region to creep cavitation is the weld metal. This has an intrinsically high density of sub-micron sized spherical weld inclusions and this is where most of the creep damage was located, in all the renormalized samples.
Proceedings Papers
Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 296-303, February 25–28, 2025,
... steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal...
Abstract
View Papertitled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
View
PDF
for content titled, Assessment of Cracking and Strain Monitoring of a Grade 92 Pipe from a Heat Recovery Steam Generator
In flexible operation with increased number of startup, shutdown, and load fluctuations, thermal fatigue damage is exacerbated along with existing creep damage in power plant pipe and pressure vessels. Recently, cracks were found in the start-up vent pipe branching from the reheat steam pipe within a heat recovery steam generator(HRSG) of J-class gas turbine, occurring in the P92 base material and repair welds. This pipe has been used at the power plant for about 10 years. Microstructural analysis of the cross-section indicated that the cracks were primarily due to thermal fatigue, growing within the grains without changing direction along the grain boundaries. To identify the damage mechanism and evaluate the remaining life, temperature and strain monitoring were taken from the damaged piping during startup and normal operation.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 586-595, October 22–25, 2013,
... Abstract In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference...
Abstract
View Papertitled, Misorientation Change Caused by the Precipitation Strengthening through Several MX Type Precipitates in High Cr Ferritic Creep Resistant Steels
View
PDF
for content titled, Misorientation Change Caused by the Precipitation Strengthening through Several MX Type Precipitates in High Cr Ferritic Creep Resistant Steels
In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference to the creep test and creep interrupting test. VN precipitation increased the creep strength if the content was higher than 0.02%. Simultaneous addition of Nb and V in the specimen resulted in the complex NbC-VN precipitates even in the as-heat-treated specimens. The coherent and fine-needle-type VN was also detected in the steel. These precipitates are expected to increase the creep strength according to the creep strain curves. V variation up to 0.02% did not affect the crystallographic character of the grain boundary in the as-heat-treated specimens. Nb variation affected the crystallographic character of the grain boundary significantly because of the grain refinement effect of NbC. VN precipitation during the creep test restricted the crystallographic misorientation-angle-profile degradation. Integrating all intragranular precipitates, VN, restricts the crystallographic degradation significantly. The long-term creep test results and the precise precipitation analysis will be disclosed by the presentation.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1042-1063, October 25–28, 2004,
... of creep and damage kinetics, weldability, microstructure analysis during creep, modeling of precipitation and coarsening kinetics, and deformation behavior under creep loading. The individual projects are briefly described, outlining the conceptual approach towards quantitatively describing the creep...
Abstract
View Papertitled, A Comprehensive Approach to the Development and Improvement of 9-12% Cr Steels: Report, Status, and Outlook
View
PDF
for content titled, A Comprehensive Approach to the Development and Improvement of 9-12% Cr Steels: Report, Status, and Outlook
The Institute of Materials Science, Welding and Forming (IWS) conducts research activities on ferritic/martensitic 9-12% Cr steels through an interconnected network of projects. These projects focus on mechanical properties of base and weld metals, microstructural characterization of creep and damage kinetics, weldability, microstructure analysis during creep, modeling of precipitation and coarsening kinetics, and deformation behavior under creep loading. The individual projects are briefly described, outlining the conceptual approach towards quantitatively describing the creep behavior of 9-12% Cr steels. The research efforts aim to comprehensively understand and model the creep performance of these advanced steel grades by investigating their microstructural evolution, damage mechanisms, precipitation kinetics, and deformation characteristics under creep conditions. The integrated projects examine both base metals and welded joints, providing insights into material properties, weldability, and microstructure-property relationships critical for their application in high-temperature components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1446-1456, October 21–24, 2019,
... to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. Microstructure analysis have revealed that intragranular fracture along γ/γ grain boundary occurred in γ single phase alloy whereas it does not along β/γ...
Abstract
View Papertitled, <span class="search-highlight">Microstructure</span> Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
View
PDF
for content titled, <span class="search-highlight">Microstructure</span> Effect on Enhancement of Room-Temperature Ductility in β-Ti Containing γ-TiAl Based Alloys
Effects of microstructure constituents of α 2 -Ti 3 Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. Microstructure analysis have revealed that intragranular fracture along γ/γ grain boundary occurred in γ single phase alloy whereas it does not along β/γ interphase in alloys containing β phase. In addition, local strain accumulations along β/γ interphase have been confirmed. The present results, thus, confirmed the significant contribution of β phase, especially the existence of β/γ interphase to enhancement of the room-temperature ductility in multicomponent TiAl alloys.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 573-581, February 25–28, 2025,
... of the root. Thus, a special GMAW-Pulsed version was applied to achieve good wettability and defect-free joints. ASTM G48 tests were performed to evaluate the corrosion resistance through Critical Pitting Testing (CPT) analysis on the root pass, microstructural analysis via optical microscopy, and impact...
Abstract
View Papertitled, Assessment of Super Duplex Stainless Steel Welding using Hyper Duplex Filler Metal: <span class="search-highlight">Microstructure</span> and Corrosion Performance
View
PDF
for content titled, Assessment of Super Duplex Stainless Steel Welding using Hyper Duplex Filler Metal: <span class="search-highlight">Microstructure</span> and Corrosion Performance
Super Duplex stainless steels (SDSS) are alloys based on the Fe-Cr-Ni-N system. The chemical composition is tailored to achieve a balanced microstructure of 50% ferrite and 50% austenite. Hyper Duplex Stainless Steels (HDSS) are also duplex materials distinguished by their remarkable yield strength (≥700 MPa) and corrosion resistance (PREN>48). They have been developed as an alternative to the well-established SDSS when superior mechanical and corrosion performance is required. This enhanced performance is attributed to alloying additions, primarily Cr, Mo, and N. In this study, a comparison is conducted between filler metals of SDSS and HDSS for the root welding of SDSS plates. The gas tungsten arc welding (GTAW) process was used to carry out root welding passes and Gas Metal Arc Welding (GMAW) for filling passes on SDSS substrates arranged in a V groove to simulate a repair scenario. The heat input was controlled in both processes, keeping it below 2.0 kJ/mm in the GTAW and 1.2 kJ/mm in the GMAW. GTAW with constant current was used and the parameters achieved producing full penetration welds with SDSS and HDSS. In this case, Nitrogen was used as backing gas to avoid oxidation of the root. Thus, a special GMAW-Pulsed version was applied to achieve good wettability and defect-free joints. ASTM G48 tests were performed to evaluate the corrosion resistance through Critical Pitting Testing (CPT) analysis on the root pass, microstructural analysis via optical microscopy, and impact toughness. Consequently, a comprehensive examination of the welded joints outlines manufacturing conditions, limitations, and the applications of SDSS and HDSS filler metals.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 168-184, October 3–5, 2007,
... calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive...
Abstract
View Papertitled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
View
PDF
for content titled, Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers
The development of materials technologies for piping and tubing in advanced ultrasupercritical (A-USC) power plants operating at steam temperatures above 700°C represents a critical engineering challenge. The 23Cr-45Ni-7W alloy (HR6W), originally developed in Japan as a high-strength tubing material for 650°C ultra-supercritical (USC) boilers, was systematically investigated to evaluate its potential for A-USC plant applications. Comparative research with γ-strengthened Alloy 617 revealed that the tungsten content is intimately correlated with Laves phase precipitation and plays a crucial role in controlling creep strength. Extensive creep rupture tests conducted at temperatures between 650-800°C for up to 60,000 hours demonstrated the alloy's long-term stability, with 105-hour extrapolated creep rupture strengths estimated at 88 MPa at 700°C and 64 MPa at 750°C. Microstructural observations after creep tests and aging confirmed the material's microstructural stability, which is closely linked to long-term creep strength and toughness. While Alloy 617 exhibited higher creep rupture strength at 700 and 750°C, the materials showed comparable performance at 800°C. Thermodynamic calculations and microstructural analysis revealed that the Laves phase in HR6W gradually decreases with increasing temperature, whereas the γ' phase in Alloy 617 rapidly diminishes and almost completely dissolves at 800°C, potentially causing an abrupt drop in creep strength above 750°C. After comprehensive evaluation of creep properties, microstructural stability, and other reported mechanical characteristics, including creep-fatigue resistance, HR6W emerges as a promising candidate for piping and tubing in A-USC power plants.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 933-944, February 25–28, 2025,
... metal is used. coarse-grained heat-affected zone delayed hydrogen cracking test fracture surface examination hydrogen-induced cracking susceptibility low alloy steel microstructural analysis microstructure nondestructive examination post-weld heat treatment pressure vessels temper bead...
Abstract
View Papertitled, Effect of Reheated CGHAZ <span class="search-highlight">Microstructure</span> on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
View
PDF
for content titled, Effect of Reheated CGHAZ <span class="search-highlight">Microstructure</span> on Hydrogen-Induced Cracking Susceptibility in SA-508 Steel
According to ASME Case N-888-3, Similar and Dissimilar Metal Welding Using Ambient Temperature SMAW or Machine GTAW Temper Bead Technique, a 48 hr waiting period before conducting the final nondestructive examination (NDE) is required when ferritic filler weld metal is used. The purpose of the 48 hr hold is to confirm the absence of hydrogen-induced cracking in the temper bead heat-affected zone. In previous research, the effect of post-weld heat treatment (PWHT) and temper bead welding (TBW) on the hydrogen-induced cracking (HIC) susceptibility in the coarse-grained heat-affected zone (CGHAZ) in welds of SA-508, P-No. 3 Group 3, pressure vessel steel was investigated using the Delayed Hydrogen Cracking Test (DHCT). In that previous study, the Gleeble thermomechanical simulator was used to generate six CGHAZ microstructural conditions: as-welded (AW), PWHT, and AW with single a TBW reheat at 675, 700, 725, and 735°C. Hydrogen was introduced to the specimen through cathodic charging under in situ constant tensile stress. The HIC susceptibility for these microstructures was ranked by the DHCT at a diffusible hydrogen level significantly exceeding typical GTAW and SMAW processes. The work described in this paper investigates the susceptibility to HIC of these same CGHAZ microstructures with DHCT at variable current densities, further ranking each condition. Test results were analyzed by fracture surface examination of failed tests, and cross-section microstructural analysis under a scanning electron microscope (SEM). Future steps include evaluating critical hydrogen content levels using gas chromatography for each condition. The results from this study will be used to consider potential elimination of the NDE hold time requirement in Case N-888-3 when ferritic weld metal is used.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 712-722, February 25–28, 2025,
... and the heat affected zone (HAZ). This was the apparent primary cause of the failure. However, chloride-induced SCC of such materials typically results in transgranular crack propagation, whereas the observed cracks were indicative of intergranular stress corrosion cracking (IGSCC). Microstructural analysis...
Abstract
View Papertitled, Damage Mechanisms - Failure <span class="search-highlight">Analysis</span> of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
View
PDF
for content titled, Damage Mechanisms - Failure <span class="search-highlight">Analysis</span> of Cracked 304 Stainless Steel Conduit of PWR Incore Instrumentation System
The incore instrumentation system of a pressurized water reactor (PWR) facilitates neutron flux mapping and temperature measurements at specific core locations. A guide conduit, extending from the seal table to the lower reactor pressure vessel head, guides and protects each incore guide thimble between the table and the lower reactor vessel head. Each flux thimble houses a detector and drive cable. Once filled with reactor coolant, the conduit becomes an extension of the reactor coolant pressure boundary. This paper reports the examination results of cracking detected in a TP304 stainless steel guide conduit adjacent to a fillet weld at the upper surface of a TP304 seal table. The cracking resulted in reactor coolant leakage that was detected by the presence of boric acid deposits on the exterior of the conduit and table. Failure analysis including dimensional measurements, chemical analysis, stereomicroscopy, metallography, and scanning electron microscopy showed that extensive cracking of the conduit and seal table material occurred due to stress corrosion cracking (SCC). Assessment showed that chlorine-containing deposits were present on the exterior of the conduit and on the surfaces of the seal table and were due to the design and operation of HVAC systems at the coastal plant. Stainless steels are susceptible to SCC in environments with elevated temperatures, chloride contents, and increased tensile stress – particularly in non-post weld heat treated (PWHT) weld regions and the heat affected zone (HAZ). This was the apparent primary cause of the failure. However, chloride-induced SCC of such materials typically results in transgranular crack propagation, whereas the observed cracks were indicative of intergranular stress corrosion cracking (IGSCC). Microstructural analysis showed that the observed cracks initiated in sensitized areas of material adjacent to the weld. Sensitization of the material caused chromium depletion from adjacent areas and increased susceptibility of the depleted areas to IGSCC. In this case, the most probable source of sensitization was related to welding and the long-term growth of grain boundary carbides nucleated during welding. This was considered a contributing cause to the failure.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 140-152, August 31–September 3, 2010,
... in China during the past few years. This paper presents the evaluation results of S30432 tubes manufactured by four steel plants in China as well as Sumitomo super304H tubes for comparison. A detailed microstructural analysis of the tubes has been performed by using optical and electron microscope...
Abstract
View Papertitled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
View
PDF
for content titled, Evaluation of 18Cr-9Ni-3Cu-Nb-N Austenitic Stainless Tubes for Ultra-Supercritical Power Boiler
Creep-resistant austenitic stainless steels are known to be the potential candidate materials for use as super- and re-heater tubes in ultra-super critical (USC) power plants. Among them, ASTM A213/A213M S30432, a novel 18-8 stainless steel (18Cr- 9Ni-3Cu-Nb-N), has attracted considerable attention from electric industry due to its combined lower cost and more excellent performance in contrast to traditional TP347H steel. More than 10 years of service in Japan laid a solid foundation for the steel being selectable USC boiler materials. Steels of S30432 have been recently developed in China during the past few years. This paper presents the evaluation results of S30432 tubes manufactured by four steel plants in China as well as Sumitomo super304H tubes for comparison. A detailed microstructural analysis of the tubes has been performed by using optical and electron microscope, and mechanical properties of the tubes have been evaluated using hardness testing as well as tensile testing up to 700°C. It was found that the impurity elements, nonmetallic inclusions and grain size of the S30432 tubes were well controlled. TEM observation revealed the microstructural changes for a selected batch of S30432 specimens in condition of hot rolled material, as-extruded tube, solution treated tube and 650°C/1000h aged tube. Most attention was paid to the morphology and distribution of precipitates in the microstructure which should be responsible for the enhanced performance of the steel. Although the hardness of all the evaluated tubes was measured to be similar, they showed more or less differences in tensile properties between each other. Creep rupture testing is still in progress, and the steel might exhibit excellent long-term creep rupture strength at 650°C as was predicted from the currently available testing results.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1395-1401, October 21–24, 2019,
.... Conversely, Eγα 2 and FLγ displayed a slight acceleration and the longest rupture strain, albeit with the shortest rupture time compared to Eγ. Upon microstructural analysis of of the creep-test specimens, it was observed that numerous dynamic recrystallized grains (DXGs) and sub-grains formed along grain...
Abstract
View Papertitled, Effects of γ-TiAl/γ Lamellar Interfaces and Grain-Boundary α 2 -Ti 3 Al Phase on Creep of TiAl Based Alloy
View
PDF
for content titled, Effects of γ-TiAl/γ Lamellar Interfaces and Grain-Boundary α 2 -Ti 3 Al Phase on Creep of TiAl Based Alloy
The creep behavior of a γ-TiAl based alloy at 1073 K was investigated, examining three different microstructures: equiaxed γ (Eγ), γ/γ fully lamellar (FLγ), and equiaxed γ with α 2 phase on grain boundaries (Eγα 2 ). The aim was to understand the influence of lamellar interfaces and grain boundary α 2 phase on creep behavior. Initially, creep rates were consistent across all specimens upon loading. However, Eγ exhibited a gradual decrease in creep rate compared to Eγα 2 and FLγ. Notably, the minimum creep rate of Eγ was one order of magnitude lower than that of Eγα 2 and FLγ. Conversely, Eγα 2 and FLγ displayed a slight acceleration and the longest rupture strain, albeit with the shortest rupture time compared to Eγ. Upon microstructural analysis of of the creep-test specimens, it was observed that numerous dynamic recrystallized grains (DXGs) and sub-grains formed along grain boundaries and interiors in Eγ, whereas they were limited to the region along grain boundaries in FLγ. In contrast, very few DXGs were formed in Eγα 2 . These findings indicate that γ/γ interfaces inhibit the extension of DXGs into grain interiors, suggesting that the grain boundary α 2 phase effectively suppresses the formation of DXGs.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1198-1212, October 25–28, 2004,
... focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested...
Abstract
View Papertitled, Creep strength of High-Temperature Alloys for Ultrasupercritical Steam Boilers
View
PDF
for content titled, Creep strength of High-Temperature Alloys for Ultrasupercritical Steam Boilers
The demand for higher efficiency and reduced emissions in coal-fired power boilers will result in the use of higher steam temperatures and pressures. A significant materials effort is required to reach a target steam condition of 760°C/35MPa. These new Ultrasupercritical (USC) units will require the use of nickel-based superalloys. Long-term creep strength will be a determining factor in achieving the highest possible steam conditions. To this end, the creep strength of commercially available (Haynes 230), modified/controlled chemistry (CCA617/Maгco 617), and new (INCONEL 740) alloys, including weldments, are being investigated at Oak Ridge National Laboratory (ORNL). Creep tests at ORNL show that the CCA617 provides a significant improvement in strength over the standard alloy 617 at 650°C to possibly 750°C. The strength of alloy 230 is well characterized, thus the testing on 230 has focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested material is being used to further understand the structure-properties relationship in these materials and determine long-term stability of the microstructures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 678-689, February 25–28, 2025,
... properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis...
Abstract
View Papertitled, Creep Deformation Mechanisms in IN738LC Manufactured With Laser Powder Bed Fusion
View
PDF
for content titled, Creep Deformation Mechanisms in IN738LC Manufactured With Laser Powder Bed Fusion
This study investigates the influence of build orientation on the high-temperature mechanical properties of IN738LC manufactured via metal laser powder bed fusion (PBF-LB/M). Since the PBF-LB/M layer-wise manufacturing process significantly affects grain morphology and orientation—ranging from equiaxed to textured grains—mechanical properties typically exhibit anisotropic behavior. Samples were manufactured in three build orientations (0°, 45°, and 90°) and subjected to hot tensile and creep testing at 850°C following DIN EN ISO 6892-2 and DIN EN ISO 204 standards. While tensile properties of the 45° orientation predictably fell between those of 0° and 90° orientations, creep behavior over 100-10,000 hours revealed unexpected results: the 45° orientation demonstrated significantly shorter rupture times and faster creep rates compared to other orientations. Microstructural analysis revealed distinct creep deformation mechanisms active within different build orientations, with the accelerated creep rate in 45° specimens attributed to multiple phenomena, particularly η-phase formation and twinning. These findings provide crucial insights into the orientation-dependent creep behavior of PBF-LB/M-manufactured IN738LC components.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1151-1162, October 22–25, 2013,
... and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes. austenitic stainless steel boiler tubes electron probe X-ray microanalysis failure analysis martensitic stainless steel microstructural analysis nickel-base superalloys phase...
Abstract
View Papertitled, Applications of a Phase <span class="search-highlight">Analysis</span> Technology to Advanced Heat Resistant Steels and Nickel-Base Superalloys
View
PDF
for content titled, Applications of a Phase <span class="search-highlight">Analysis</span> Technology to Advanced Heat Resistant Steels and Nickel-Base Superalloys
An approach to phase analysis called multiphase separation technology (MPST) has been developed to determine phase chemistries of precipitated particles with sizes visible under SEM/EPMA observations based on the data from the conventional EDS measurements on bulk steel/alloy material samples. Quite accurate results from its applications have successfully been demonstrated by comparisons of SEM/EPMA - EDS + MPST with some other currently available means, for instance, chemical extractions (CA), TEM-EDS, AP-FIM and Thermo-Calc. etc. Applied examples regarding the relations of change in phase parameters including type, composition, volume fraction, size and distribution of the precipitated particles with material qualities, creep rupture lives, property stabilities, property recovery and boiler tube failures for some advanced heat resistant steels (P92, Super304H, HR3C, TP347HFG (H)) are given through the use of the SEM/EPMA - EDS + MPST in this contribution. Examples on phase quantifications of some nickel base superalloys (Nimonic263, Inconel 740 and Rhenium-containing alloys) are also shown to reveal the feasibility of its use in determining phase chemistries of precipitated particles under different measurement conditions. Practical applications of this combined technology to the material quality control and assessments, processing parameter improvements, as well as fracture/failure analyses of high temperature components have shown that this technology is quite convenient and effective when used for microstructural analysis purposes during R&D, manufacturing and operating processes.
Proceedings Papers
Deformation Behavior of P92 at Temperatures above 600°C and Under Simulated Fire Accident Conditions
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1213-1226, October 25–28, 2004,
... accident simulation heating tests were conducted to assess the integrity of P92 beyond 650°C (relevant for short-term creep) and compare it to stainless steel 1.4404 (potential building material). Finally, microstructural analysis was performed on tested samples, revealing that the martensitic structure...
Abstract
View Papertitled, Deformation Behavior of P92 at Temperatures above 600°C and Under Simulated Fire Accident Conditions
View
PDF
for content titled, Deformation Behavior of P92 at Temperatures above 600°C and Under Simulated Fire Accident Conditions
This study examines the deformation behavior of P92 steel (ferritic, 9% Cr) at high temperatures (600°C to 900°C) using isothermal hot tensile tests. Particular focus is placed on the stress-strain behavior around its alpha-gamma transition temperature (825°C). Additionally, fire accident simulation heating tests were conducted to assess the integrity of P92 beyond 650°C (relevant for short-term creep) and compare it to stainless steel 1.4404 (potential building material). Finally, microstructural analysis was performed on tested samples, revealing that the martensitic structure with characteristic laths was retained at temperatures up to 750°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 832-843, October 11–14, 2016,
... and industrial practices that has long term implications on scale growth kinetics and morphological development. Microstructural analysis of both virgin and ex-service tubing reveals the presence of a pre-existing oxide structure that is incorporated into the inwardly growing scale and is implicated...
Abstract
View Papertitled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
View
PDF
for content titled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
Oxide scale formation in the inner bore of steam tubing has been identified as a key metric for determining operational parameters and life expectancy of modern boiler systems. Grade 91 tubing is commonly used for the construction of key components within boiler systems designed for power generation operating in the temperature range of 500 to 650 °C. Standard laboratory test procedures involve grinding the surface of test coupons to homogenise their surface structure and improve experimental consistency, however, data presented here shows a discrepancy between laboratory and industrial practices that has long term implications on scale growth kinetics and morphological development. Microstructural analysis of both virgin and ex-service tubing reveals the presence of a pre-existing oxide structure that is incorporated into the inwardly growing scale and is implicated in the formation of multiple laminar void networks. These void networks influence thermal diffusivity across the scale and may function as regions of spallation initiation and propagation.
1