Skip Nav Destination
Close Modal
Search Results for
microstructural characterization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 289
Search Results for microstructural characterization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
.... The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size...
Abstract
View Papertitled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Characterization</span> and Small Punch Creep Testing of 9-12%Cr Steel Weldments
View
PDF
for content titled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Characterization</span> and Small Punch Creep Testing of 9-12%Cr Steel Weldments
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 675-688, October 3–5, 2007,
... on precipitation characteristics and long-term precipitate evolution within the COST 536 framework. microstructural characterization microstructural investigation martensitic stainless steel precipitation transmission electron microscopy Advances in Materials Technology for Fossil Power Plants...
Abstract
View Papertitled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Characterization</span> of Modern Martensitic Steels
View
PDF
for content titled, <span class="search-highlight">Microstructural</span> <span class="search-highlight">Characterization</span> of Modern Martensitic Steels
TAF steel is a Japanese high-boron 10.5% Cr martensitic stainless steel known for its exceptional high-temperature creep strength. Its high boron content (300-400 ppm) limited practical applications due to reduced hot workability in large turbine components. Recent research suggests that increasing boron content while adjusting nitrogen levels could enhance creep properties by promoting fine vanadium carbonitride formation while preventing boron nitride formation. This study presents microstructural investigations, particularly using transmission electron microscopy, focusing on precipitation characteristics and long-term precipitate evolution within the COST 536 framework.
Proceedings Papers
Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
.... Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella...
Abstract
View Papertitled, <span class="search-highlight">Microstructure</span> <span class="search-highlight">Characterization</span> of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
View
PDF
for content titled, <span class="search-highlight">Microstructure</span> <span class="search-highlight">Characterization</span> of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 748-761, October 25–28, 2004,
... and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density...
Abstract
View Papertitled, <span class="search-highlight">Microstructure</span> <span class="search-highlight">Characterization</span> of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
View
PDF
for content titled, <span class="search-highlight">Microstructure</span> <span class="search-highlight">Characterization</span> of Advanced Boiler Materials for Ultra Supercritical Coal Power Plants
The goal of improving the efficiency of pulverized coal power plants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam conditions of 760°C and 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other related alloys. Consequently, new materials based on austenitic stainless steels and nickel-base superalloys are being evaluated as candidate materials for these applications. In the present work, the nickel-base superalloys CCA617, Haynes 230 and Inconel 740, and an austenitic stainless steel Super З04H, were evaluated. The materials were aged for different lengths of time at temperatures relevant to USC applications and the corresponding microstructural changes were characterized by x-ray diffraction, optical, scanning and transmission electron microscopy, with particular attention being given to the structure, morphology and compositions of phases (including γ, γ’, carbides, ordered phases, etc.) and the nature, density and distribution of dislocations and other defects. The results are presented and discussed in light of accompanying changes in microhardness.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 703-714, October 21–24, 2019,
... Abstract Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes...
Abstract
View Papertitled, <span class="search-highlight">Characterization</span> of the <span class="search-highlight">Microstructural</span> Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
View
PDF
for content titled, <span class="search-highlight">Characterization</span> of the <span class="search-highlight">Microstructural</span> Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes as this will help researchers understand the long-term microstructural evolution and degradation of the material, which can impact the performance and lifetime of the components that are in service. In this research, the microstructure of an ex-service Super 304H reheater tube that has been in service for 99,000 hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX carbonitrides rich in niobium, copper-rich particles, M 23 C 6 , sigma phase, Z phase, a cored phase, and a BCC phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1-12, February 25–28, 2025,
... October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0001 Copyright © 2024 ASM International® All rights reserved. www.asminternational.org CHARACTERIZATION OF BUILD PARAMETERS AND MICROSTRUCTURE IN LOW HEAT INPUT WAAM OF NI-BASED SUPERALLOY HAYNES 282 Benjamin Adam...
Abstract
View Papertitled, <span class="search-highlight">Characterization</span> of Build Parameters and <span class="search-highlight">Microstructure</span> in Low Heat Input Wire-Arc Additive Manufacturing of Ni-based Superalloy Haynes 282
View
PDF
for content titled, <span class="search-highlight">Characterization</span> of Build Parameters and <span class="search-highlight">Microstructure</span> in Low Heat Input Wire-Arc Additive Manufacturing of Ni-based Superalloy Haynes 282
Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy deposition can create large components but often requires post-processing treatments, such as hot isostatic pressing (HIP), to address porosity. This study explores a low heat-input, high deposition rate GMAW process to achieve fully dense Haynes 282 without HIP. Twenty-one blocks were deposited, varying travel and wire feed speeds. Initial analysis (visual inspection, microstructural examination, and CT) revealed the impact of build parameters on internal porosity and defects. Scanning electron microscopy provided insights into structural heterogeneity and microstructural properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 580-591, October 21–24, 2019,
... of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness...
Abstract
View Papertitled, <span class="search-highlight">Characterization</span> of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, <span class="search-highlight">Characterization</span> of Ni-Based Alloys for Advanced Ultra-Supercritical Power Plants
The harsh operating conditions of Advanced Ultra-Supercritical (A-USC) power plants, i.e., steam operation conditions up to 760°C (1400°F)/35 MPa (5000 psi), require the use of Ni-based alloys with high temperature performance. Currently, the U.S. Department of Energy Fossil Energy program together with Electric Power Research Institute (EPRI) and Energy Industries of Ohio (EIO) is pursuing a Component Test (Comets) project to address material- and manufacturing-related issues for A-USC applications. Oak Ridge National Laboratory (ORNL) is supporting this project in the areas of mechanical and microstructure characterization, weld evaluation, environmental effect studies, etc. In this work, we present results from these activities on two promising Ni-based alloys and their weldments for A-USC applications, i.e., Haynes 282 and Inconel 740H. Detailed results include microhardness, tensile, air and environmental creep, low cycle fatigue, creep-fatigue, environmental high cycle fatigue, and supporting microstructural characterization.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, February 25–28, 2025,
... Abstract An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five...
Abstract
View Papertitled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
View
PDF
for content titled, Investigation of Novel Nickel-Based Alloys for High Temperature Molten Chloride Salt Reactor Structural Applications
An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five alloy compositions with varying Mo/W and two alloys with high tungsten modified with the addition of Al or Ti were selected and prepared. The newly developed alloys were evaluated for their response to thermal aging in the temperature range of 700 to 850 °C and corrosion in the KCl-NaCl-MgCl 2 salt under suitable conditions. Thermally aged and post-corrosion test samples were characterized to ascertain phase transformations, microstructural changes and corrosion mechanisms. Al/Ti modified alloys showed significant change in hardness after 400 hours aging at 750°C, which was found to be due to the presence of fine γ’/γ” precipitates along with plate-shaped W/Mo-rich particles. These alloys show comparable molten salt corrosion resistance as commercial alloys at 750°C for 200-hour exposures. The good corrosion behavior of these alloys may be attributed to the formation of a protective multicomponent Al-or Ti-enriched oxide as well as the unique microstructure.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 989-1000, October 11–14, 2016,
... and nitrogen balance are discussed. Microstructural characterization of two different laboratory heats, is presented and efforts in European projects towards an upscaling of melts are presented. Base material creep testing data at 650 °C up to 50.000 hours is presented and assessed to commercial alloys...
Abstract
View Papertitled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and Oxidation
View
PDF
for content titled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and Oxidation
The presented work summarizes the results of more than 10 years of research at TU Graz and TU Chemnitz and partners on a martensitic boron and nitrogen stabilized 9Cr3W3Co (MARBN) steel grade. The design philosophy of MARBN steels is presented and critical issues regarding boron and nitrogen balance are discussed. Microstructural characterization of two different laboratory heats, is presented and efforts in European projects towards an upscaling of melts are presented. Base material creep testing data at 650 °C up to 50.000 hours is presented and assessed to commercial alloys such as ASTM grades P91 and P92. An increase of creep rupture stress of more than +20% was recorded. Oxidation tests in steam at 650°C revealed an anomalous response of the material. Several specimens exhibited excellent oxidation resistance commonly only seen for grades of higher chromium content. The anomalous oxidation behaviour is identified and discussed, although the causes remain yet unclear. Results of manufacturing, characterization and testing of different MARBN welds, including gas-tungsten-arc-, gas-metal-arc-, friction stir and electron beam welds reveal a microstructure memory effect in the heat affected zone, so that no uniform fine-grained zone is present. The behaviour of crosswelds during long-term creep testing at 650 °C up to more than 32.000 hours is assessed and the susceptibility to Type IV cracking is discussed. The manuscript summarizes research of more than 10 years, presents current research activities on MARBN and describes open questions for an alloy identified as a promising martensitic steel grade for elevated temperature components.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1042-1063, October 25–28, 2004,
... Abstract The Institute of Materials Science, Welding and Forming (IWS) conducts research activities on ferritic/martensitic 9-12% Cr steels through an interconnected network of projects. These projects focus on mechanical properties of base and weld metals, microstructural characterization...
Abstract
View Papertitled, A Comprehensive Approach to the Development and Improvement of 9-12% Cr Steels: Report, Status, and Outlook
View
PDF
for content titled, A Comprehensive Approach to the Development and Improvement of 9-12% Cr Steels: Report, Status, and Outlook
The Institute of Materials Science, Welding and Forming (IWS) conducts research activities on ferritic/martensitic 9-12% Cr steels through an interconnected network of projects. These projects focus on mechanical properties of base and weld metals, microstructural characterization of creep and damage kinetics, weldability, microstructure analysis during creep, modeling of precipitation and coarsening kinetics, and deformation behavior under creep loading. The individual projects are briefly described, outlining the conceptual approach towards quantitatively describing the creep behavior of 9-12% Cr steels. The research efforts aim to comprehensively understand and model the creep performance of these advanced steel grades by investigating their microstructural evolution, damage mechanisms, precipitation kinetics, and deformation characteristics under creep conditions. The integrated projects examine both base metals and welded joints, providing insights into material properties, weldability, and microstructure-property relationships critical for their application in high-temperature components.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 644-655, October 11–14, 2016,
...), 1.22 m (48 inch) diameter crack-free pancake forging produced on Wyman Gordon’s 50,000 ton press in Grafton, MA. The forging process produced a disk with an average grain size of ASTM 8 or finer. Forging cut-up, microstructural characterization, and mechanical property testing was performed by GE Power...
Abstract
View Papertitled, Qualification of UNS N07028 for Forged Steam Turbine Rotors
View
PDF
for content titled, Qualification of UNS N07028 for Forged Steam Turbine Rotors
The US Advanced Ultra-Supercritical (A-USC) Consortium conducted an extensive program to evaluate available superalloys for use in rotors for steam turbines operating at a nominal temperature of 760 °C (1400 °F). Alloys such as 282, Waspaloy, 740H, 720Li, and 105 were tested in the form of bar supplied from the alloy producers. Ultimately, alloy 282 was down-selected for the turbine rotor based on its combination of creep strength, phase stability, ductility, and fatigue resistance. The next step in development was to produce a full-size rotor forging for testing. A team was established consisting of GE Power (project management and testing), Wyman-Gordon (forging and testing) and Special Metals (melting and billetizing) to pursue the work. A research license to melt the alloy was obtained from Haynes International. The first step of the development was to devise a triple melt (VIM-ESR-VAR) practice to produce 610 mm (24 inch) diameter ingot. Two ingots were made, the first to define the VAR remelting parameters and the second to make the test ingot utilizing optimum conditions. Careful attention was paid to ingot structure to ensure that no solidification segregation occurred. A unique homogenization practice for the alloy was developed by the US Department of Energy (DOE) and National Energy Technology Laboratory (NETL). Billetization was performed on an open die press with three upset and draw stages. This procedure produced an average grain size of ASTM 3. A closed die forging practice was developed based on compressive flow stress data developed by Wyman Gordon Houston for the consortium project. Multiple 18 kg forgings were produced to define the forging parameters that yielded the desired microstructure. The project culminated with a 2.19 metric ton (4830 lb), 1.22 m (48 inch) diameter crack-free pancake forging produced on Wyman Gordon’s 50,000 ton press in Grafton, MA. The forging process produced a disk with an average grain size of ASTM 8 or finer. Forging cut-up, microstructural characterization, and mechanical property testing was performed by GE Power. Fatigue and fracture toughness values of the disk forging exceeded those previously reported for commercially available rolled bar.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 520-530, October 3–5, 2007,
... characterization of the scale revealed different oxide compositions. chromium steel cobalt content creep strength copper content fireside corrosion resistance microstructure steamside oxidation resistance superheater tubes thermal fatigue resistance titanium content Advances in Materials...
Abstract
View Papertitled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
View
PDF
for content titled, Steamside Oxidation Behavior of Experimental 9%Cr Steels
Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650°C for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, February 25–28, 2025,
... for some holistic assessments on DED 316H to be made. This paper presents EPRI-generated DED 316H creep rupture test data, microstructure characterization, and chemical analysis results from each test program. The results will also be compared to traditional wrought 316H product forms. TEST PROGRAM...
Abstract
View Papertitled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
View
PDF
for content titled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for High Temperature Power Plant Applications
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, February 25–28, 2025,
... microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed...
Abstract
View Papertitled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
View
PDF
for content titled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1240-1248, February 25–28, 2025,
... with microstructure through multi-scale characterization. In this study, the role of minor alloying additions in 347H stainless steels on creep-rupture properties and microstructure evolution during isothermal exposure has been evaluated. The amounts of the strengthening/deteriorating secondary phase precipitates...
Abstract
View Papertitled, <span class="search-highlight">Characterization</span> of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
View
PDF
for content titled, <span class="search-highlight">Characterization</span> of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels for Life-Prediction Modeling
In this study, the role of minor alloying additions in 347H stainless steels (UNS34709, ASTM A240/240M) on creep-rupture properties at 650-750°C and microstructure evolution during isothermal exposure at 750°C has been investigated, aiming to provide the experimental dataset as boundary conditions of physics-based modeling for material/component life prediction. Four different 347H heats containing various amounts of boron and nitrogen additions were prepared and evaluated. The combined additions of B and N are found to stabilize the strengthening secondary M 23 C 6 carbides and retarding the transition from M 23 C 6 to sigma phase precipitates during thermal exposure. The observed kinetics of microstructure evolution reasonably explains the improvement of creep-rupture properties of 347H stainless steels with the B and N additions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction...
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 726-737, October 21–24, 2019,
... of microstructure evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase...
Abstract
View Papertitled, A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples
View
PDF
for content titled, A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples
Due to their excellent high temperature oxidation resistance, utilities worldwide are adopting advanced austenitic stainless steels (A-ASS) for critical plant components, such as heat exchangers, as they aim to achieve higher operating conditions. However, challenges may be encountered in developing life assessment and life management strategies for such components. This is because conventional methods used for life assessment, such as measuring steam side oxide scale thickness in ferritic and conventional austenitic material to predict tube metal temperature, may not be successfully applied to A-ASS. In such instances, tracking the formation and evolution of microstructural features during service, may offer a possible method to predict the temperature of these steels. For such metallurgy based lifing strategy to be successful, it is essential to develop a good understanding of microstructure evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase formed at the gauge and grip sections of the samples is quantified and the methodology used to quantify this phase is presented. From the results, a time-temperature-transformation diagram for sigma formation is developed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1249-1256, February 25–28, 2025,
...-core weld metals with nominally the same compositions. Microstructure characterization was conducted with an optical microscope. A conventional metallographic specimen preparation followed by etching with 5% Nital was used for the grain structure characterization, and the same specimens were used...
Abstract
View Papertitled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
View
PDF
for content titled, Development of PWHT-Free, Reduced Activation Creep-Strength Enhanced Bainitic Ferritic Steel for Large-Scale Fusion Reactor Components
A compositional modification has been proposed to validate an alloy design which potentially eliminates the requirement of post-weld heat treatment (PWHT) while preserving the advantage of mechanical properties in a reduced activation bainitic ferritic steel based on Fe-3Cr-3W-0.2V- 0.1Ta-Mn-Si-C, in weight percent, developed at Oak Ridge National Laboratory in 2007. The alloy design includes reducing the hardness in the as-welded condition for improving toughness, while increasing the hardenability for preserving the high-temperature mechanical performance such as creep-rupture resistance in the original steel. To achieve such a design, a composition range with a reduced C content combining with an increased Mn content has been proposed and investigated. Newly proposed “modified” steel successfully achieved an improved impact toughness in the as- welded condition, while the creep-rupture performance across the weldments without PWHT demonstrated ~50% improvement of the creep strength compared to that of the original steel weldment after PWHT. The obtained results strongly support the validity of the proposed alloy design.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 156-161, October 21–24, 2019,
...-B 9%Cr steel, microstructure changes during creep, as well as its relevance to the creep behavior have not been fully characterized. Since B tends to segregate on grain boundaries in steels, it is believed that B enhances the grain boundary strength and thereby enhances the long-term creep strength...
Abstract
View Papertitled, <span class="search-highlight">Microstructure</span> Evolution in a High Boron Ferritic Steel during Creep at 650°C
View
PDF
for content titled, <span class="search-highlight">Microstructure</span> Evolution in a High Boron Ferritic Steel during Creep at 650°C
Microstructure change during creep at 650°C has been examined for a high-B 9%Cr steel by FIB-SEM serial sectioning 3D observation, Nano-SIMS, SEM, EBSD and TEM. The precipitates formed in the steel were M 23 C 6 , Laves phase, and a quite small amount of MX. For as-tempered steel, precipitation of M 23 C 6 on the prior austenite grain boundaries was clearly found, while precipitation of the Laves phase was not confirmed during tempering. The volume fraction of the Laves phase gradually increased with elapsed time, while M 23 C 6 appeared to increase once and decrease afterward, based on the comparison between the 2,754 h ruptured sample and the 15,426 h ruptured sample. Nano-SIMS measurements have revealed that B segregates on the prior austenite grain boundaries during normalizing, and it dissolves into M 23 C 6 .
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1-10, October 21–24, 2019,
... extensometers, attached to the gauge lengths. Type S thermocouples were attached to the gauge lengths of the specimens to ensure a temperature accuracy of 3 ° C. Microstructural Characterization For microstructural examination, the mechanical testing specimens were embedded in epoxy resin, ground and polished...
Abstract
View Papertitled, “Reactive” <span class="search-highlight">Microstructure</span>—The Key to Cost-Effective, Fatigue-Resistant High-Temperature Structural Materials
View
PDF
for content titled, “Reactive” <span class="search-highlight">Microstructure</span>—The Key to Cost-Effective, Fatigue-Resistant High-Temperature Structural Materials
Future, flexible thermal energy conversion systems require new, demand-optimized high-performance materials. In order to provide a basis for the targeted development of fatigue-resistant, cost-effective steel grades, the microstructural damage to materials and the failure of conventional and novel steels were investigated in thermo-mechanical fatigue and fatigue crack propagation experiments. Based on the results, improved, ferritic “HiperFer” (High performance Ferrite) steels were designed, produced and characterized. A brief description of the current state of development is given.
1