Skip Nav Destination
Close Modal
Search Results for
microcracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 28
Search Results for microcracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 800-813, February 25–28, 2025,
... of a test program for a small punch creep test at 650°C of 316L stainless steel produced from additive manufacturing. A major finding is that the deflection rate curve versus time may have multiple minima as opposed to forged 316L with only one minimum. This is believed to be due to microcracking and has...
Abstract
View Papertitled, The Small Punch Creep Test: A Tool to Rank and Qualify Creep Properties for the Comparison of Forged and Additive Manufactured 316L Stainless Steels
View
PDF
for content titled, The Small Punch Creep Test: A Tool to Rank and Qualify Creep Properties for the Comparison of Forged and Additive Manufactured 316L Stainless Steels
There is an increased interest in miniature testing to determine material properties. The small punch test is one miniaturized test method that has received much interest and is now being applied to support the design and life assessment of components. This paper presents the results of a test program for a small punch creep test at 650°C of 316L stainless steel produced from additive manufacturing. A major finding is that the deflection rate curve versus time may have multiple minima as opposed to forged 316L with only one minimum. This is believed to be due to microcracking and has direct consequences on the determination of the creep properties that that are based on a single minimum value in the CEN Small Punch Standard. In the paper, aged and nonaged materials are compared, and small punch creep results are also compared with standard uniaxial creep tests. The multiple minima feature means that the approach to determine equivalent stress and strain rate from the minimum deflection rate needs to be modified. Some approaches for this are discussed in the paper. Under the assumption that the multiple minima represent cracking, it opens up opportunities to quantify reduced creep ductility by the small punch test.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1075-1086, February 25–28, 2025,
... of the welds ranging from approximately 85,000 to 150,000 hours. Cracking in all cases occurred by creep damage (cavitation and microcracking) in the partially transformed heat-affected zone (PTZ, aka Type IV zone) in the base metal adjacent to the welds. The location and morphology of the cracking...
Abstract
View Papertitled, Cracking of Grade 91 Steel Welds in Longer-Term Service - Case Studies
View
PDF
for content titled, Cracking of Grade 91 Steel Welds in Longer-Term Service - Case Studies
This paper presents three recent example cases of cracking in Grade 91 steel welds in longer-term service in high temperature steam piping systems: two girth butt welds and one trunnion attachment weld. All the cases were in larger diameter hot reheat piping, with the service exposure of the welds ranging from approximately 85,000 to 150,000 hours. Cracking in all cases occurred by creep damage (cavitation and microcracking) in the partially transformed heat-affected zone (PTZ, aka Type IV zone) in the base metal adjacent to the welds. The location and morphology of the cracking are presented for each case along with operating conditions and potential contributors to the cracking, such as system loading, base metal chemical composition, and base metal microstructure.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 821-829, February 25–28, 2025,
... hydrogen charging. Although the fracture surface of Alloy H-X showed mainly dimple fracture surface, quasi-cleavage fracture was observed in limited regions at the edge surface. Multiple microcracks were observed on the parallel portion of Alloy 201 and Alloy 625 specimens. In contrast, the microcracks...
Abstract
View Papertitled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
View
PDF
for content titled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
Hydrogen as a clean fuel is increasingly being used to propel gas turbines and to power combustion engines. Metallic materials including Ni-based alloys are commonly used in conventional gas turbines and combustion engines. However, hydrogen may cause embrittlement in these materials, depending on their chemical composition. In this work, the hydrogen embrittlement behavior of Ni-based alloys containing up to 50 wt.% Fe has been investigated using slow strain rate tensile testing, under cathodic hydrogen charging at room temperature. It was found that the larger the Ni equivalent concentration in an alloy, the more severe the hydrogen embrittlement. It was also found that solid solution alloys have less severe hydrogen embrittlement than precipitation alloys of the same Ni equivalent concentration. In solid solution alloys, hydrogen embrittlement led to cleavage type fracture, which is in line with literature where hydrogen enhanced planar deformation. In precipitation alloys, hydrogen embrittlement resulted in a typical intergranular fracture mode.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
... microcracking plastic deformation quantitative acoustic emission method httpsdoi.org/10.31399/asm.cp.am-epri-2004p0720 Copyright © 2005 ASM International® 720 721 722 723 724 725 726 727 728 729 730 731 732 Copyright © 2004 ASM International. All rights reserved. 2004 ASM International ...
Abstract
View Papertitled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 983-988, October 11–14, 2016,
... respectively. During the dissection test of samples, 3 defects with microcracks or microcrack-type defects, emerged at the boundaries of slag-type defects, were found in total. Refer to Fig. 6 9 for the pictures of defects. 985 Fig. 6 Weld Defect (1) Fig. 7 Weld Defect (2) Fig. 8 Weld Defect (3...
Abstract
View Papertitled, Inspection and Evaluation of Defects on the Welds of P92 Header
View
PDF
for content titled, Inspection and Evaluation of Defects on the Welds of P92 Header
The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic and component sampling. By analyzing the results of on-site test and samples removed from the component, it is found that cracks existing in the welds are hydrogen induced delayed cracks. During the welding process and post-heating treatment (hydrogen bake-out), dehydrogenation was insufficient. This fact, combined with welding residual stresses resulted in the observed hydrogen induced cracking.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 795-802, October 21–24, 2019,
... of cavities is formed during creep in the MoSiBTiC alloy [4]. The presence of large cavities close to rupture surfaces suggested that the creep rupture initiates in regions where a group of cavities interlink and form microcracks. Furthermore, the percolating connected Moss phase with similar orientations...
Abstract
View Papertitled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
View
PDF
for content titled, Ultrahigh-Temperature Tensile Creep Behavior of 1st Generation MoSiBTiC Alloy
The cast microstructure of 1st generation MoSiBTiC alloy composed of Mo solid solution (Mo ss ), Mo 5 SiB 2 , TiC phases largely affects tensile-creep behavior in the ultrahigh temperature region. Mo 5 SiB 2 phase crystallized during solidification is plate-like with a size of several tens of microns. The plate surface is parallel to the (001) basal plane, and the <100] directions preferentially grow along the cooling direction, and thereby Mo 5 SiB 2 has a strong texture while Moss and TiC show randomly-oriented distribution in a cast ingot. During creep, Mo 5 SiB 2 plates are largely rotated and Moss works as sticky ligament in the small-plate-reinforced metal-matrix composites. This may be the reason why the MoSiBTiC alloy exhibits large creep elongation and excellent creep resistance. In other words, the evolution of microstructures infers that the consummation of Mo 5 SiB 2 plate rotation may lead to the initiation of creep rapture process. Therefore, the unique microstructure formed during solidification provides the feature of good mechanical properties for the 1st generation MoSiBTiC alloy.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 744-752, October 22–25, 2013,
... was predominantly ascribed to the formation of geometric damage such as creep cavities and microcracks rather than the microstructural changes. At relatively high stresses, that is, in the long-term creep region, the creep fracture is mainly attended by large deformation and accompanied with almost no geometric...
Abstract
View Papertitled, Creep Damage Evaluation of High Cr Ferritic Steel Based on Change in Hydrogen Desorption Characteristics
View
PDF
for content titled, Creep Damage Evaluation of High Cr Ferritic Steel Based on Change in Hydrogen Desorption Characteristics
The change in hydrogen desorption characteristic due to creep was investigated to examine the possibility of hydrogen as tracer for detecting and evaluating the creep damage accumulated in high Cr ferritic boiler steel, Gr.91. Hydrogen charging into the creep specimen was conducted by means of cathodic electrolysis. Next, the thermal desorption analyses (TDA) were carried out at temperature range from room temperature to 270°C for measuring the hydrogen evolution curve. The experimental results revealed that the amount of hydrogen desorbed during analysis, C H , increased with increasing creep life fraction, although the trend of increase in C H was strongly dependent on the stress level. Moreover, there was an almost linear correlation between the logarithm of C H measured on the creep ruptured specimen and the Larson-Miller parameter (LMP), which was approximated by “log C H = 0.39 LMP – 13.4”. This can be a criterion for creep rupture and means that as far as the C H does not reach the line, the rupture never occurs.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 693-704, August 31–September 3, 2010,
..., and some net-shaped cavities into strings of cavities and microcracks, as shown in Figure 4(a) and 4(b).Figure 4(b) further shows that there exist inclusions in almost dimples, and the inclusions would inevitably be nuclei of dimples and cavities. a SEM micrograph,696h b SEM micrograph,2056h Figure 3...
Abstract
View Papertitled, Microstructural Evolution of P92 Steel during Creep
View
PDF
for content titled, Microstructural Evolution of P92 Steel during Creep
In this paper, the microstructural evolution of P92 steel were studied in the viewpoint of degradation mechanism based on the creep rupture experiment results obtained at elevated temperature by means of macroscopic, metallographic, electronic microscope, energy spectrum, XRD and TEM examination. The results show that the decrease of mechanical properties of P92 steel is mainly due to the change of microstructure and the transformation of carbides, and there is definite relationship between microstructure evolution, mechanical properties and life loss of P92 steel. The results are beneficial to the further study of mechanism of high temperature creep rupture strength and microstructural evolution of heat-resistant steel. It also has important instructive significance to quantitative identification of scientific selection of materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1008-1019, February 25–28, 2025,
... that they found include: Microcracking in the weld heat affected zone (HAZ) Cross-weld strength lower than base metal (57 to 79% of base metal) Laser beam welding (LBW) of 5 mm thick wrought Haynes® 282® to itself without filler metal has been reported by Osaba et al.[3]. Issues that they found include...
Abstract
View Papertitled, Demonstration of Thick-Section Welding of Haynes 282 to Steel
View
PDF
for content titled, Demonstration of Thick-Section Welding of Haynes 282 to Steel
This study addresses the welding challenges encountered when joining Haynes 282, a heat-resistant superalloy, to 3.5NiCrMoV high-strength low alloy steel (HSLA) for advanced power plant applications, particularly in thick-section components like rotors. The project demonstrated successful thick-section dissimilar metal welding up to 76 mm (3 in.) using two techniques: keyhole tungsten inert gas welding and conventional gas tungsten arc welding with Haynes 282 filler metal. Various groove weld geometries were evaluated, supported by computational weld modeling to predict and minimize weld distortion. The results validate these welding approaches for critical power plant components requiring both high-temperature performance and cost-effectiveness.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 247-259, October 11–14, 2016,
... HV10. Figure 10: Light optical images of Alloy 617B (left) and Alloy C263 (right) The damage after creep and creep-fatigue loading (tHt = tHc = 10 min) at 700° C in Alloy 617B specimens, is documented in Fig. 11. After creep rupture test, numerous intergranular microcracks can be observed...
Abstract
View Papertitled, Experimental Investigations and Numerical Simulation Accompanying the HWT Test Loop Operation
View
PDF
for content titled, Experimental Investigations and Numerical Simulation Accompanying the HWT Test Loop Operation
A material test loop has been installed at GKM Mannheim, which enables thick-walled components of future highly-efficient power plants to be exposed to steam temperatures of up to 725 °C. The project goal was to demonstrate the feasibility of a 700 °C power plant.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 658-674, October 3–5, 2007,
... that Fatigue is typically fully transgranular and creep is typically fully intergranular. It should be noted that while with traditional alloys exhibiting equiaxed microstructure creep voids generally develop on grain boundaries. These voids then increase in number and size leading to microcrack formation...
Abstract
View Papertitled, The Role of Creep-Fatigue in Advanced Materials
View
PDF
for content titled, The Role of Creep-Fatigue in Advanced Materials
A comprehensive EPRI initiative launched in 2006 has addressed the critical need to better understand creep-fatigue interactions in power plants experiencing cyclic operation. This international collaboration of industry experts has focused on evaluating current test methods, analyzing crack initiation and growth methodologies, examining life prediction approaches for various applications, identifying deficiencies in creep-fatigue damage assessment, and determining future research requirements. This paper presents key findings from the project, with particular attention to the performance of creep-strengthened ferritic steels, specifically Grade 91 and 92 steels, providing essential insights for power plants facing increasingly demanding operational conditions.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 230-241, October 22–25, 2013,
... the interdendritic regions (final region to solidify) had a large population of creep cavities and microcracks (b). This is consistent with more detailed ongoing research which shows cavitation initiates in the interdendritic regions having large areas denuded in gamma prime [14] which is similar to reported...
Abstract
View Papertitled, Creep-Rupture Performance of Inconel Alloy 740 and Welds
View
PDF
for content titled, Creep-Rupture Performance of Inconel Alloy 740 and Welds
Inconel alloy 740/740H (ASME Code Case 2702) is an age-hardenable nickel-based alloy designed for advanced ultrasupercritical (A-USC) steam boiler components (superheaters, reheaters, piping, etc.). In this work, creep testing, beyond 40,000 hours was conducted a series of alloy 740 heats of varying product form, chemistry, and grain size. Long-term creep-rupture strength was found to be weakly dependent on grain size. Analysis of the time-to-rupture data was conducted to ensure long-term strength projections and development of ASME stress allowables. Testing was also conducted on welded joints in alloy 740 with different filler metal and heat-treatment combinations. This analysis shows the current weld strength reduction factor of 30% (Weld Strength Factor of 0.70) mandated by ASME Code Case 2702 is appropriate for 740 filler metal but other options exist to improve strength. Based on these results, it was found that alloy 740 has the highest strength and temperature capability of all the potential A-USC alloys available today.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
... the macro damage that accumulated in the HAZ of the cross-weld. The micro-cracks were found to range in size from 0.2 to 0.5 mm, but the total alignment of microcracks was approximately 3 mm in length. The final estimated life fraction in this sample was approximately 94%. 321 Figure 5: Macro images...
Abstract
View Papertitled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
View
PDF
for content titled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 650-661, February 25–28, 2025,
... fluid volume to prevent cracking and enable self-healing (filling) of microcracks. These temperature peaks were significantly below the Rene 80 solidus and liquidus temperatures of 1292°C and 1357°C respectively. 652 a) b) c) d) Figure 2. Tip repair of the IGT Raw I blade by: a) Manual GTAW using LW7...
Abstract
View Papertitled, The Development of Weldable Nickel-Based Superalloys and Technologies for Repair and Additive Manufacturing of Turbine Engine Components
View
PDF
for content titled, The Development of Weldable Nickel-Based Superalloys and Technologies for Repair and Additive Manufacturing of Turbine Engine Components
High gamma prime Ni-based superalloys comprising ≥3.5 % Al are difficult to weld due to high propensity of these materials to weld solidification, heat affected zone liquation, and stress-strain cracking. In this study the root cause analysis of cracking and overview on the developed weldable Ni-based superalloys for repair of turbine engine components manufactured from equiaxed (EA), directionally solidified (DS), and single crystal (SX) materials as well as for 3D AM is provided. It is shown that the problem with the solidification and HAZ liquation cracking of turbine engine components manufactured from EA and DS superalloys was successfully resolved by modification of welding materials with boron and silicon to provide a sufficient amount of eutectic at terminal solidification to promote self-healing of liquation cracks along the weld - base material interface. For crack repair of turbine engine components and 3D AM ductile LW4280, LW7901 and LCT materials were developed. It is shown that LW7901 and LCT welding materials comprising 30 - 32 wt.% Co produced sound welds by GTAW-MA on various SX and DS materials. Welds demonstrated high ductility, desirable combination of strength and oxidation properties for tip repair of turbine blades. Examples of tip repair of turbine blades are provided.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1232-1243, October 22–25, 2013,
...; methods: SMAW (left), GMAW (right) RESULTS OF MICROSCOPIC METALLOGRAPHIC TESTS The microscopic examination, which was performed according to standard EN 1321, did not reveal any microcracks and confirmed the presence of proper microstructure in all the zones of the joints made of P92 martensitic steel...
Abstract
View Papertitled, Application of New GMAW Welding Methods Used in Prefabrication of P92 (X10CrWMoVNb9-2) Pipe Butt Welds
View
PDF
for content titled, Application of New GMAW Welding Methods Used in Prefabrication of P92 (X10CrWMoVNb9-2) Pipe Butt Welds
Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using GTAW process combined with MMA processes. Progress in GMAW process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding procedure. The investigation also involved microscopic and fractographic examinations and creep tests. The results reveal that welding with GMAW is by no means inferior to a currently applied SMAW method yet the time of the process is shorter by 50%. The article presents the world’s first known positive results in welding of P92 grade steel using GMAW welding method.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1067-1076, August 31–September 3, 2010,
... process induced by the heat input of the welding thermal cycle. As shown in Figure 5, the microstructure observation of the weld metal demonstrates a typical solidification microstructure of Ni based alloy. There is no defect such as porosity or microcrack 300 Vickers hardness profiles (9.8N) 250 200 150...
Abstract
View Papertitled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
Continuous and active works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants in Europe, United States and also Japanese national project has launched in 2008. In this new Japanese project Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is one of the candidate materials for boiler tube and pipe as well as Ni based alloys such as well-known Alloy617, Alloy263 and Alloy740. The most important issue in boiler fabrication is the welding process of these alloys and long-term reliability of their weldments. Authors investigated the weldability of HR6W thick-wall pipe. The integrity of the weldment was confirmed with metallurgical investigation, mechanical testing and long term creep rupture test. It is proved that the narrow gap HST welding procedure can meet the requirements for Ni based or Fe-Ni based alloys and provides excellent strength properties.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, February 25–28, 2025,
... to 456 HV. Figure 6 shows post-fracture cross-sections of PBF, BJ, DED, and wrought creep specimens at 100x and 500x magnifications. Among these samples, only the wrought, solution-annealed, and heattreated sample exhibited signs of necking during failure. The PBF sample exhibited microcracking near...
Abstract
View Papertitled, Impact of Three Additive Manufacturing Techniques on Microstructure and Creep Damage Development in Alloy 718
View
PDF
for content titled, Impact of Three Additive Manufacturing Techniques on Microstructure and Creep Damage Development in Alloy 718
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 603-613, October 21–24, 2019,
... by replication, where the number noted in brackets mean life fraction. No clear voids or cracks were confirmed in base metal on the outer surface and in weld metal on the side surface at 2,000h (23 Fig. 6(a). Microcrack with about 300mm in length was observed in the base metal at 3,000h (35 and propagated...
Abstract
View Papertitled, Creep Damage Evaluation for Welded Pipe of Ni Based Alloy HR6W Using Full Thickness Specimen
View
PDF
for content titled, Creep Damage Evaluation for Welded Pipe of Ni Based Alloy HR6W Using Full Thickness Specimen
This paper investigates creep rupture and damage behaviors of HR6W weldment using full thickness specimen cut from the circumferentially welded pipe. Creep tests were conducted at 750°C for durations up to 8,000 hours, and damage morphology of weldment during creep was characterized. The applicability of several nondestructive detection methods to the creep damage evaluation was discussed. It was found that full thickness specimen was broken at the base metal and main crack was inclined approximately at 45 degrees to the axial direction of the specimen. Times to creep rupture of full thickness specimen were comparable with those of the standard specimen. In addition, a small crack in base metal on the outer surface was first observed at life fraction of 35% by replication. PT can detect the crack in about half of the life. The crack whose length is longer than 3mm can be detected by UT in latter half of the life.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 316-327, February 25–28, 2025,
... of, and ahead of, the crack. The crack is discontinuous, consisting of small microcracks forming through the linkage creep cavities. Crack growth, therefore, appears to occur as a result of accumulation of creep cavities in a broad region around a poorly defined crack tip (continuum damage mechanism) rather...
Abstract
View Papertitled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
View
PDF
for content titled, Creep Crack Growth on High and Low Creep Ductility Grade 91 Steel
This research compares creep crack growth behavior of two heats of creep strength enhanced ferritic (CSEF) steel, grade 91. These heats represent extremes of creep damage susceptibility, one heat exhibiting low creep ductility and the other high creep ductility. Creep crack growth tests were performed with compact tension specimens and were monitored with direct current potential drop and optical surface measurements. Load line displacement was measured throughout the duration of the tests. Specimens were sectioned, mounted, and analyzed using optical and scanning electron microscopy to assess the presence of oxidation, micro-cracking, creep damage, and void density. Tests were performed over a range of initial stress intensities on the low ductility material to investigate the impact of creep ductility. Metallurgical evidence and test data for each crack growth test was assessed to evaluate crack growth behavior linked to creep crack growth parameter (C*) and stress/creep damage distribution in the vicinity of the crack.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1123-1131, October 21–24, 2019,
... boundaries without cavity formation could be seen. The microcracks occur, often as wedge cracks at the grain triple points, which suggests the grain boundary sliding as the creep mechanism, typically at high loads. All cracks are concentrated along the grain boundaries. The crack paths are, 1126 depending...
Abstract
View Papertitled, Creep and Failure Behavior of Welded Joints Made of Alloy 617B
View
PDF
for content titled, Creep and Failure Behavior of Welded Joints Made of Alloy 617B
Welded joints of Ni-base alloys are often the critical part of components operated under high temperature service conditions. Especially welds in thick-walled structures are susceptible to various crack phenomena. Creep rupture and deformation behavior of different similar welds of Alloy 617B, both circumferential and longitudinal, were determined in many research German projects with the aim to qualify the nickel alloys and its welded joints for the use in highly efficient Advanced Ultra Supercritical (AUSC) power plants. Damage mechanisms and failure behavior have also been investigated within these projects. In order to reduce the welding residual stresses in thick-walled components a post weld heat treatment (PWHT) for Alloy 617B is recommended after welding. This PHWT reduces not only residual stresses but causes changes in the damage mechanisms and failure behavior of welded joints of Alloy 617B. Improving effects of PWHT have been investigated in this study and results of microstructural investigations were correlated with the material behavior.
1