Skip Nav Destination
Close Modal
Search Results for
micro X-ray fluorescence
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Search Results for micro X-ray fluorescence
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 235-245, October 21–24, 2019,
... martensitic stainless steel metallurgical risk factors micro X-ray fluorescence microstructure scanning electron microscopy transmission electron microscopy Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M...
Abstract
View Papertitled, Metallurgical Risk Factors in Grade 91 Steel
View
PDF
for content titled, Metallurgical Risk Factors in Grade 91 Steel
Modified 9Cr-1Mo steel (ASTM Gr.91) is widely used in components of fossil fueled power plants around the world today. This grade of steel has however been shown to exhibit significant variations in creep life and creep ductility, which has led to premature in-service failures. The aim of this work is to define potential metallurgical risk factors that lead to this variation in performance. To achieve this, a set of creep test samples that represent a wide range in this variation of creep behavior in this steel grade have been studied in detail. As a first stage in this characterization the macro-scale chemical homogeneity of the materials were mapped using micro-XRF. Understanding the segregation behavior also allows quantification of microstructural parameters in both segregated and non-segregated areas enabling the variations to be determined. For example this showed a significant increase in the number per unit area of Laves phase particles in high compared with low Mo content areas. To study the effect of MX particles on segregation a methodology combining SEM and TEM was employed. This involved chemically mapping the larger V containing particles using EDS in the SEM in segregated and unsegregated areas and then comparing the results to site-specific TEM analysis. This analysis showed that although the average size of the V containing samples is in the expected 0-50 nm size range, these particles in some samples had a wide size distribution range, which significantly overlaps with the M 23 C 6 size distribution range. This together with the segregation characteristics has important implications for determining meaningful quantitative microstructural data from these microstructurally complex materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1195-1206, February 25–28, 2025,
... to the population of other inclusions within the material. This information is not normally reported because of the difficulties in applying automated inclusions analysis to inclusions containing elements that produce such low energy X-rays (185 and 392 eV respectively for B and N). In this work, in order to reduce...
Abstract
View Papertitled, The Effect of Post Weld Heat Treatment on the Microstructure and Creep Damage Susceptibility in Grade 92 Steel
View
PDF
for content titled, The Effect of Post Weld Heat Treatment on the Microstructure and Creep Damage Susceptibility in Grade 92 Steel
Creep strength enhanced ferritic (CSEF) steels have shown the potential for creep failure in the weld metal, heat affected zone (HAZ) or fusion line. Details for this behavior have been frequently linked to metallurgical risk factors present in each of these locations which may drive the evolution of damage and subsequent failure. This work is focused on three weld samples fabricated from a commercially sourced Grade 92 steel pipe section. These weld samples were extracted from the same welded section but were reported to exhibit failure in different time frames and failure locations (i.e., HAZ of parent, fusion-line, and weld metal). The only variables that contribute to this observed behavior are the post weld heat treatment (PWHT) cycle and the applied stress (all tests performed at 650 °C). In this work detailed microstructural analysis was undertaken to precisely define the locations of creep damage accumulation and relate them to microstructural features. As part of this an automated inclusion mapping process was developed to quantify the characteristics of the BN particles and other inclusions in the parent material of the samples. It was found that BN particles were only found in the sample that had been subjected to the subcritical PWHT, not those that had received a re-normalizing heat treatment. Such micron sized inclusions are a known potential nucleation site for creep cavities, and this is consistent with the observed failure location in the HAZ of the parent in the sample where these were present. In the absence of BN inclusions, the next most susceptible region to creep cavitation is the weld metal. This has an intrinsically high density of sub-micron sized spherical weld inclusions and this is where most of the creep damage was located, in all the renormalized samples.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 104-115, October 21–24, 2019,
... that employed a zirconia wash coat. Following VIM, slices were cut for chemistry analysis. A Rigaku ZSX Primus II x-ray fluorescence (XRF) analyzer was used for this while LECO CS444LS and LECO TC436AR instruments were used for carbon/sulfur and oxygen/nitrogen analyses, respectively. These ingots were...
Abstract
View Papertitled, Martensitic Steel CPJ7 for Improved High-Temperature Creep Capabilities in Power Plants
View
PDF
for content titled, Martensitic Steel CPJ7 for Improved High-Temperature Creep Capabilities in Power Plants
A creep resistant martensitic steel, CPJ7, was developed with an operating temperature approaching 650°C. The design originated from computational modeling for phase stability and precipitate strengthening using fifteen constituent elements. Approximately twenty heats of CPJ7, each weighing ~7 kg, were vacuum induction melted. A computationally optimized heat treatment schedule was developed to homogenize the ingots prior to hot forging and rolling. Overall, wrought and cast versions of CPJ7 present superior creep properties when compared to wrought and cast versions of COST alloys for turbines and wrought and cast versions of P91/92 for boiler applications. For instance, the Larson Miller Parameter curve for CPJ7 at 650°C almost coincides with that of COST E at 620°C. The prolonged creep life was attributed to slowing down the process of the destabilization of the MX and M 23 C 6 precipitates at 650°C. The cast version of CPJ7 also revealed superior mechanical performance, well above commercially available cast 9% Cr martensitic steel or derivatives. The casting process employed slow cooling to simulate the conditions of a thick wall full-size steam turbine casing but utilized a separate homogenization step prior to final normalization and tempering. To advance the development of CPJ7 for commercial applications, a process was used to scale up the production of the alloy using vacuum induction melting (VIM) and electroslag remelting (ESR), and underlined the importance of melt processing control of minor and trace elements in these advanced alloys.