Skip Nav Destination
Close Modal
Search Results for
metallographic microsectioning
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Search Results for metallographic microsectioning
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1256-1267, October 22–25, 2013,
... oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising...
Abstract
View Papertitled, Non-Destructive and Optical Thickness Measurements of Steam Grown Oxide on Contacting Surfaces of Power Plant
View
PDF
for content titled, Non-Destructive and Optical Thickness Measurements of Steam Grown Oxide on Contacting Surfaces of Power Plant
Both non-destructive and traditional microsectioning techniques have been used to measure the oxide thickness of steam grown oxides between two close contacting surfaces. Different power plant materials, nickel based alloys and ferritic-martensitic steels, were exposed to steam oxidation at temperatures ranging from 650 °C up to 750 °C and periods from 500 h to 3000 h. Ultrasonic measurements of thickness, based on the speed of sound in the oxide, were performed and compared to optical thickness measurements based on conventional metallographic microsectioning with promising results. Improvements on the measurement resolution have been practically demonstrated with oxides down to 65 μm thickness being measured successfully.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1114-1125, February 25–28, 2025,
..., chemical composition, point measurements by means of EDX 1119 Metallographic evaluation of the microstructure Metallographic cross sections were taken from the cracked samples in order to analyze the microstructure. Figure 7 shows the microsection of sample 2.1.4 after etching with 3% HNO3 (Nital...
Abstract
View Papertitled, Claddings, Coatings, and Surface Modification: Load Behavior of Hardfaced Sealing Surfaces of Fittings
View
PDF
for content titled, Claddings, Coatings, and Surface Modification: Load Behavior of Hardfaced Sealing Surfaces of Fittings
High-pressure valves and fittings used in coal-fired 600/625 °C power plants are hardfaced for protection against wear and corrosion and to provide optimum sealing of the guides and seats. Stellite 6 and Stellite 21 are often used for hardfacing, which is carried out by build-up welding, usually in several layers. The valve materials are generally heat-resistant steels such as 10CrMo9-10 (1.7380), X20CrMoV1 (1.4922), or Grade 91 / Grade 92 (1.4903 / 1.4901). In recent years, cracks or delaminations have frequently occurred within the hardfaced layer. The influence of cycling operation is not well understood. Other essential factors are the chemical composition of the base material and of the filler metal; especially in terms of the resulting iron dilution during the deposition of the welding overlays. The research project was initiated to investigate the crack and delamination behavior and to understand the involved damage mechanisms. Thermostatic and cyclic exposure tests have shown that cracking is favored by the formation of brittle phases due to iron dilution from the substrate material during the manufacturing process. Recommendations for the welding process of hardfaced sealing surfaces of fittings were derived from the investigation results.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 842-851, October 21–24, 2019,
... suspensions (particle sizes between 1 - 6 m) and colloidal silicon dioxide suspension (particle size 0.02 m). A modified Lichtenegger-Bloech color etching (water, NH4HF2, K2S2O5) was used for microsections. The metallographic analysis of the cast melts revealed, that after the casting has cooled down, dark...
Abstract
View Papertitled, Welding and Foundry Processing of MARBN Cast Components
View
PDF
for content titled, Welding and Foundry Processing of MARBN Cast Components
Advanced martensitic 9% chromium steels have been identified as the most favored group of materials for high temperature applications in thermal power plants. To extend the temperature range of martensitic steels up to 650°C large effort was put on the development of new alloy concepts. The so-called MARBN concept (Martensitic steel with defined Boron/Nitrogen relation) provides increased creep rupture strength due to higher solid solution strengthening and improved microstructural stability. The major improvement is the reduction of type IV cracking in welded joints, which shifts the focus to the creep rupture strength of the weld metal. This paper illustrates the process experience of the steel foundry for production of heavy cast components in latest state of the art 9-12%Cr-MoCoVNbNB-alloyed cast steel grades and the newest state of development and prototype components in MARBN cast steel grades. Metallurgy, solidification, heat treatment and welding are main items to be considered for development of new, complex steel grades for foundry processing with the help of empiric processing in test programs and thermo-physical simulation. As welding is an essential processing step in the production of heavy steel cast components a good out-of-position weldability is required. Moreover a stress-relieve heat-treatment takes place subsequently after welding for several hours. This contribution also deals with the development of matching welding consumables for the production of heavy cast components and discusses the challenges of defining appropriate welding and heat treatment parameters to meet the requirements of sufficient strength and toughness at ambient temperature. Additionally, first results of creep rupture tests are presented.