Skip Nav Destination
Close Modal
Search Results for
mercury
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-8 of 8
Search Results for mercury
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 82-91, October 3–5, 2007,
... electricity. In addition to reducing CO 2 , these advanced systems will have to achieve near-zero emissions of criteria pollutants (SO 2 , NO X , and filterable and condensable particulate) and hazardous air pollutants such as mercury. carbon dioxide hazardous air pollutants mercury ultra...
Abstract
View Papertitled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
View
PDF
for content titled, UltraGen: a Proposed Initiative by EPRI to Advance Deployment of Ultra-Supercritical Pulverized Coal Power Plant Technology with Near-Zero Emissions and CO 2 Capture and Storage
UltraGen is an initiative proposed by EPRI to accelerate the deployment and commercialization of clean, efficient, ultra-supercritical pulverized coal (USC PC) power plants that are capable of meeting any future CO 2 emissions regulations while still generating competitively-priced electricity. In addition to reducing CO 2 , these advanced systems will have to achieve near-zero emissions of criteria pollutants (SO 2 , NO X , and filterable and condensable particulate) and hazardous air pollutants such as mercury.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1331-1337, February 25–28, 2025,
...%, also known as FLiNaK) and graphite at 923 K for 20 and 100 h and obtained threshold pressures [9]. They found that the threshold pressures obtained from the infiltration tests using FLiNaK were comparable to those calculated using a scaling factor obtained from mercury infiltration tests [9...
Abstract
View Papertitled, Interactions Between U-Bearing Fluoride Fuel Salts and Graphite
View
PDF
for content titled, Interactions Between U-Bearing Fluoride Fuel Salts and Graphite
A thorough understanding of interactions between graphite and fluoride fuel salts is crucial, as graphite is a promising candidate for the moderator of molten salt reactors. This study investigates the infiltration of fluoride fuel salts into graphite and the fluorination of graphite by these salts under various pressures and temperatures. A high-pressure salt infiltration test apparatus was developed to examine the infiltration of NaF-KF-UF 4 and NaF-BeF 2 -UF 4 -ZrF 4 fuel salts into two types of graphite at high temperatures. For tests using NaF-BeF 2 -UF 4 -ZrF 4 , two different temperatures were selected to assess the impact of temperature on threshold pressure. The study observed salt infiltration into graphite at pressures exceeding its threshold pressure, and the threshold pressure for infiltration was lower at the higher temperature. In addition, the formation of carbon fluorides on the surface of post-test graphite specimens was identified.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 968-981, October 3–5, 2007,
... emissions control systems, and significant progress has been achieved in reducing the emissions of particulate, nitrogen oxides, sulfur dioxide, and mercury from coal-fired plants. Conceptually, there are three main approaches to capturing CO2 from combustion of fossil fuels: 1. Pre-combustion...
Abstract
View Papertitled, Overview of Oxy-Combustion Technology for Utility Coal-Fired Boilers
View
PDF
for content titled, Overview of Oxy-Combustion Technology for Utility Coal-Fired Boilers
With nearly half of the world's electricity generation fueled by coal and an increasing focus on limiting carbon dioxide emissions, several technologies are being evaluated and developed to capture and prevent such emissions while continuing to use this primary fossil energy resource. One method aimed at facilitating the capture and processing of the resulting carbon dioxide product is oxy-combustion. With appropriate adjustments to the process, the approach is applicable to both new and existing power plants. In oxy-combustion, rather than introducing ambient air to the system for burning the fuel, oxygen is separated from the nitrogen and used alone. Without the nitrogen from the air to dilute the flue gas, the flue gas volume leaving the system is significantly reduced and consists primarily of carbon dioxide and water vapor. Once the water vapor is reduced by condensation, the purification and compression processes otherwise required for carbon dioxide transport and sequestration are significantly reduced. As an introduction to and overview of this technology, the paper summarizes the basic concepts and system variations, for both new boiler and retrofit applications, and also serves as an organized review of subsystem issues identified in recent literature and publications. Topics such as the air separation units, flue gas recirculation, burners and combustion, furnace performance, emissions, air infiltration issues, and materials issues are introduced.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 60-73, October 22–25, 2013,
..., the AQCS consists of the following components: NOX Control: low-NOX burners with SCR. Electrostatic Precipitator (ESP) for particulate control. Wet FGD for sulfur control. Mercury Removal Halogen injection into the boiler promoting mercury oxidation over SCR catalyst with co-capture in the FGD...
Abstract
View Papertitled, Advantages of A-USC for CO 2 Capture in Pulverized Coal Units
View
PDF
for content titled, Advantages of A-USC for CO 2 Capture in Pulverized Coal Units
Increasing the steam temperature of a coal-fired pulverized coal (PC) power plant increases its efficiency, which decreases the amount of coal required per MW of electrical output and therefore decreases the emissions from the plant, including CO 2 . However, increasing the steam temperature requires that the materials for the boiler pressure parts and steam turbine be upgraded to high-nickel alloys that are more expensive than alloys typically used in existing PC units. This paper explores the economics of A-USC units operating between 595°C and 760°C (1100°F to 1400°F) with no CO 2 removal and with partial capture of CO 2 at an emission limit of 454 kg CO 2 /MW-hr (1000 lb CO 2 /MW-hr) on a gross power basis. The goal of the paper is to understand if the improved efficiency of A-USC would reduce the cost of electricity compared to conventional ultra-supercritical units, and estimate the economically “optimal” steam temperature with and without CO 2 removal.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 982-991, October 22–25, 2013,
... yttrium could be determined based on the test result. 1.2 Effect of optimized yttrium on phase transition point and diffusion hydrogen content 1.3 Based on the optimized yttrium, comparison test has been performed between optimized yttrium and commercial electrode B9015. Mercury method has been used...
Abstract
View Papertitled, Influence of Trace RE Element on Properties and Microstructures of SA335P91 Weld Metal
View
PDF
for content titled, Influence of Trace RE Element on Properties and Microstructures of SA335P91 Weld Metal
This study investigates the impact of adding small amounts of rare earth (RE) elements on the properties and microstructures of SA335P91 steel welds. The RE elements were incorporated into the weld metal using a coating process. The researchers then proposed an optimal RE formula aimed at achieving improved properties and microstructures. To evaluate the effectiveness of this approach, various tests were conducted on both welds with and without RE additions. These tests included tensile testing (both at room and high temperatures), impact testing, metallographic analysis to examine the microstructure, determination of phase transformation points, scanning electron microscopy, and X-ray diffraction. The results revealed that the addition of RE elements has the potential to enhance the properties and modify the microstructure of SA335P91 welds.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1-10, August 31–September 3, 2010,
... plants with modern emission reduction technology (SCR for NOx, ESP for ash and FGD for SO2) in place - will be able to operate with dust emission below 10mg/Nm3, SO2 below 25 mg/Nm3 and NOx below 100 mg/Nm3. 80-90 % of the mercury content in coal is removed in ESP and FGD and further reduction can...
Abstract
View Papertitled, The European Perspective on Technology Development for Advanced USC Steam Power Plants
View
PDF
for content titled, The European Perspective on Technology Development for Advanced USC Steam Power Plants
This paper examines the ongoing significance of pulverized coal-fired steam plants in global power generation, focusing on technological advancements and strategies for improving efficiency and reducing CO 2 emissions. It traces the development of Ultra-Supercritical (USC) plants with steam temperatures around 600°C and explores immediate opportunities for further efficiency enhancements, including the innovative Master Cycle. The potential for increasing steam temperatures to 650°C using new steels and to 700°C with nickel-based AD 700 technology is discussed. The paper outlines a comprehensive strategy for CO 2 emission reduction: maximizing plant efficiency, co-firing with CO 2 -neutral fuels, and integrating with district heating/cooling or industrial heat consumers. Carbon capture and storage techniques are presented as a final step in this multi-faceted approach to sustainable power generation.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 53-64, August 31–September 3, 2010,
... burners (LNB) with over-fired air (OFA), and selective catalytic reduction (SCR) PM2.5 13 mg/Nm3 (0.013 lb/MMBtu), wet FGD PM10 10 mg/Nm3 (0.01 lb/MMBtu), electrostatic precipitator (ESP) Mercury 90 percent reduction, CaBr2 injection into furnace to promote oxidation across the SCR followed by co...
Abstract
View Papertitled, Economic Analysis of Advanced Ultra-Supercritical Pulverized Coal Power Plants: A Cost-Effective CO 2 Emission Reduction Option?
View
PDF
for content titled, Economic Analysis of Advanced Ultra-Supercritical Pulverized Coal Power Plants: A Cost-Effective CO 2 Emission Reduction Option?
A recent engineering design study conducted by the Electric Power Research Institute (EPRI) has compared the cost and performance of an advanced ultra-supercritical (A-USC) pulverized coal (PC) power plant with main steam temperature of 700°C to that of conventional coal-fired power plant designs: sub-critical, supercritical, and current USC PC plants with main steam temperatures of 541°, 582°, and 605°C, respectively. The study revealed that for a US location in the absence of any cost being imposed for CO 2 emissions the A-USC design was a slightly more expensive choice for electricity production. However, when the marginal cost of the A-USC design is compared to the reduction in CO 2 emissions, it was shown that the cost of the avoided CO 2 emissions was less than $25 per metric ton of CO 2 . This is significantly lower than any technology currently being considered for CO 2 capture and storage (CCS). Additionally by lowering CO 2 /MWh, the A-USC plant also lowers the cost of CCS once integrated with the power plant. It is therefore concluded that A-USC technology should be considered as one of the primary options for minimizing the cost of reducing CO 2 emissions from future coal power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
... burners and other devices to reduce NOx emissions [3, 4]. More recently, stringent controls have been added that include more restrictive limits on mercury, CO2, and other pollutants that result from the combustion of fossil fuels. As a result of the high cost of scrubbers and the recent surge...
Abstract
View Papertitled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of Tubing in Fossil-Fired Boilers
View
PDF
for content titled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of Tubing in Fossil-Fired Boilers
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.