Skip Nav Destination
Close Modal
Search Results for
mechanical test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 583
Search Results for mechanical test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 506-519, October 25–28, 2004,
... temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings...
Abstract
View Papertitled, Experiences in Manufacturing and Long-Term <span class="search-highlight">Mechanical</span> and Microstructural <span class="search-highlight">Testing</span> of 9-12% Chromium Steel Forgings for Power Generation Plants
View
PDF
for content titled, Experiences in Manufacturing and Long-Term <span class="search-highlight">Mechanical</span> and Microstructural <span class="search-highlight">Testing</span> of 9-12% Chromium Steel Forgings for Power Generation Plants
Within the pursuit of improved economic electricity production with reduced environmental pollution, the European research activities COST 501/522 aimed to develop advanced 9-12%Cr steels for highly stressed turbine components by increasing thermal efficiency through higher steam temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings of this COST grade E steel. Secondly, it reports on the manufacturing of a trial melt of a later 9%Cr steel containing cobalt and boron from COST development, describing its long-term creep behavior, microstructural features responsible for superior creep resistance, and test results including short-term properties, detectable flaw size, and initial creep results for a full-size trial rotor forging.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1103-1113, February 25–28, 2025,
... BAM (Federal Institute for Materials Research and Testing), Unter den Eichen 87, 12205 Berlin, Germany Heiner Oesterlin Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse 11, 79108 Freiburg, Germany Peter Ruchti ZwickRoell GmbH & Co. KG, August-Nagel-Str. 11, 89079 Ulm, Germany...
Abstract
View Papertitled, Tensile <span class="search-highlight">Testing</span> in High Pressure Gaseous Hydrogen Using the Tubular Specimen Method
View
PDF
for content titled, Tensile <span class="search-highlight">Testing</span> in High Pressure Gaseous Hydrogen Using the Tubular Specimen Method
The efforts of the European Union and Germany in particular to realize the transformation towards a climate-neutral economy over the coming decades have the establishing of a hydrogen economy as a fundamental milestone. This includes production, import, storage, transportation and utilization of great amounts of gaseous hydrogen in existing and new infrastructure. Metallic materials, mainly steels, are the most widely used structural materials in the various components of this supply chain. Therefore, the accelerated use of hydrogen requires the qualification of materials (i.e., ensuring they are hydrogen-ready) to guarantee the sustainable and safe implementation of hydrogen technologies. However, there is currently no easily applicable and standardized method to efficiently determine the impact of gaseous hydrogen on metallic materials. The few existing standards describe procedures that are complex, expensive, and only available to a limited extent globally. This article outlines the key milestones towards standardizing an efficient testing method as part of the TransHyDE flagship project. This new approach enables testing of metallic materials in gaseous hydrogen using tubular specimens. It uses only a fraction of the hydrogen required by the traditional autoclave method, significantly reducing costs associated with technical safety measures. Among the topics to be discussed are the factors influencing the test procedure, including geometrical considerations, surface quality, gas purity and strain rate.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 247-259, October 11–14, 2016,
... Heiner Oesterlin, Gerhard Maier Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany Michael Schwienheer, Yan Wang, Alfred Scholz, Matthias Oechsner Institute for Materials Technology (IfW), Technical University of Darmstadt, Germany INTRODUCTION A material test loop has been installed...
Abstract
View Papertitled, Experimental Investigations and Numerical Simulation Accompanying the HWT <span class="search-highlight">Test</span> Loop Operation
View
PDF
for content titled, Experimental Investigations and Numerical Simulation Accompanying the HWT <span class="search-highlight">Test</span> Loop Operation
A material test loop has been installed at GKM Mannheim, which enables thick-walled components of future highly-efficient power plants to be exposed to steam temperatures of up to 725 °C. The project goal was to demonstrate the feasibility of a 700 °C power plant.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 877-887, October 11–14, 2016,
... microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical...
Abstract
View Papertitled, Tenaris New High Steam Oxidation Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
View
PDF
for content titled, Tenaris New High Steam Oxidation Resistant, Creep Strength Enhanced Ferritic Steel Thor 115
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASTM grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASTM grade 91, above 600 °C, particularly related to scale growth and liftoff. After laboratory development, Thor was successfully validated at the industrial level. Several heats up to 80 metric tons were cast at the steel shop, hot rolled to tubes of various dimensions, and heat treated. Trial heats underwent extensive characterization, including deep microstructural examination, mechanical testing in the as-received condition and after ageing, long-term creep and steam oxidation testing. This paper presents an overview of metallurgical characterization performed on laboratory and industrial Thor material, including microstructural examination and mechanical testing in time-independent and time-dependent regimes. Data relevant to the behavior and the performance of Thor steel are also included.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 600-611, February 25–28, 2025,
... Abstract Miniature specimen tests are necessary to assess the mechanical properties of new fuel cladding alloys for next-generation nuclear reactors. The small specimen allows for extensive testing programs from limited volumes of material. However, there is a lack of testing equipment...
Abstract
View Papertitled, A Novel in Situ Miniature Creep Tester for Evaluation of New Cladding Alloys
View
PDF
for content titled, A Novel in Situ Miniature Creep Tester for Evaluation of New Cladding Alloys
Miniature specimen tests are necessary to assess the mechanical properties of new fuel cladding alloys for next-generation nuclear reactors. The small specimen allows for extensive testing programs from limited volumes of material. However, there is a lack of testing equipment to perform high-temperature mechanical tests on the miniature specimen. This work presents the development of a high-temperature creep test system for miniature specimens with in situ scanning electron microscope (SEM) testing capability for real-time characterization. Here, we discuss the challenges of the development of the system, such as gripping the samples, loading, heating, cooling mechanisms, and strain measurement. The equipment is used to investigate the creep behavior of FeCrAl alloy Kanthal APMT, and the results are compared with conventional creep test data from the same batch of this material.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 504-512, October 22–25, 2013,
...-base alloy, from the viewpoint of large component castability and balance of mechanical properties stability at 700°C use. Microstructure test, high temperature mechanical test and long-term heating test of each thickness part specimen were carried out and good creep rupture strength was obtained. Next...
Abstract
View Papertitled, Trial Production of Alloy 625 and Alloy 617 Casting Component for Advanced 700°C Class Steam Turbines
View
PDF
for content titled, Trial Production of Alloy 625 and Alloy 617 Casting Component for Advanced 700°C Class Steam Turbines
Advanced Ultra-Super-Critical (A-USC) technology is one of the remarkable technologies being developed to reduce CO 2 emissions. The 700°C class A-USC steam turbine project was launched in 2008 to contribute to substantial reductions in CO 2 emissions and major Japanese manufacturers of boilers and turbines joined forces with research institutes to bring the project to reality. The use of Ni-base alloys is necessary for high temperature component of 700°C class AUSC steam turbine, and which is required increasing in size of Ni-base casting alloys to apply inner casing, valve body, nozzle block and so on. Therefore, trial production and verification test of Step block (weight: 1.7 ton) with actual component thickness 100-300mm were firstly performed to investigate basic casting material properties in this study. As candidate alloy, alloy 617 was chosen from a commercially available Ni-base alloy, from the viewpoint of large component castability and balance of mechanical properties stability at 700°C use. Microstructure test, high temperature mechanical test and long-term heating test of each thickness part specimen were carried out and good creep rupture strength was obtained. Next, the nozzle block of alloy 617 was manufactured for the trial casting of the actual machine mock-up component with complex shape (weight: 1.2 ton). For a comparison, alloy 625 was cast at the same time. Both castings of alloy 617 and alloy 625 were able to manufacture without a remarkable defect. Detailed comparisons to microstructures and mechanical properties are included in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
... denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing. butt welding creep testing gas tungsten arc welding hardness martensitic stainless steel...
Abstract
View Papertitled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
View
PDF
for content titled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 575-586, October 25–28, 2004,
... and microstructure at elevated temperature up to 700 °C, using mechanical testing, TEM observations and thermodynamics calculation results. And we show advantages of the microstructure stabilized Ni-Fe base superalloy(FENIX-700), which is a candidate material for 700 °C class USC steam turbine rotor. chemical...
Abstract
View Papertitled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
View
PDF
for content titled, Modification of Ni-Fe Base Superalloy for Steam Turbine Applications
To improve microstructure stability at temperature up to 700°C and avoid segregation of Nb during melting processes, we modified the chemical composition of conventional Ni-Fe base super alloy(Ni-36Fe-16Cr-3Nb-1.7Ti-0.3Al:Alloy706). It is known that Alloy706 is strengthened by γ'(Ni 3 Al) phase and γ”(Ni 3 Nb) phase. But these phases are unstable at high temperature and transform into Nb rich δ or η) phase after long-term exposure to elevated temperature. Therefore modified alloy contains lower Nb and higher Al than those of Alloy706, and it is mainly strengthened by γ’(Ni 3 Al) phase. In fact we could not find δ or η phase in the modified alloy after creep and aging at 700 °C. Tensile strengths of the modified alloy at temperature from room temperature to 700 °C were almost same as those of Alloy706. Yield strength of modified alloy at room temperature was slightly lower than that of Alloy706, but equivalent to that of Alloy706 at higher temperatures. Tensile and yield strengths of the modified alloy at temperature from room temperature to 700 °C were higher than those of Alloy706 after aging at 700 °C. In this paper, we discuss effects of Nb and Al on mechanical properties and microstructure at elevated temperature up to 700 °C, using mechanical testing, TEM observations and thermodynamics calculation results. And we show advantages of the microstructure stabilized Ni-Fe base superalloy(FENIX-700), which is a candidate material for 700 °C class USC steam turbine rotor.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 207-218, February 25–28, 2025,
...). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed...
Abstract
View Papertitled, Tensile Property Measurement of AlSi10Mg Lattice Structures - From Single Strut to Lattice Networks
View
PDF
for content titled, Tensile Property Measurement of AlSi10Mg Lattice Structures - From Single Strut to Lattice Networks
At present there is no recognized standard test method that can be used for the measurement of the tensile properties of additively manufactured lattice structures. The aim of this work was to develop and validate a methodology that would enable this material property to be measured for these geometrically and microstructurally complex material structures. A novel test piece has been designed and trialed to enable lattice struts and substructures to be manufactured and tested in standard bench top universal testing machines and in small scale in-situ SEM loading jigs (not reported in this paper). In conjunction with the mechanical tests, a finite element (FEA) modelling approach has been used to help cross validate the methodology and results, and to enable larger lattice structures to be modelled with confidence. The specimen design and testing approach developed, is described and the results reviewed for AlSi10Mg.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1054-1065, February 25–28, 2025,
... microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed...
Abstract
View Papertitled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
View
PDF
for content titled, Evaluation of Directed Energy Deposition 316LSi Stainless Steel Pressure Boundary Parts
Additive manufacturing is being considered for pressure boundary applications for power plant service by ASME Boiler and Pressure Vessel Code and regulators. Both existing and new plants could benefit from the reduced lead times, design flexibility, and part consolidation possible with additive manufacturing. Various ASME code committees are working towards rules and guidance for use of additive manufacturing. To further the industry's understanding, this research program was undertaken to evaluate the properties of wire arc additive manufactured 316L stainless steel. This study included microstructural characterization, chemical composition testing, mechanical testing, and nondestructive evaluation of multiple large (1600-pound (700 kg)) 316LSi stainless steel valve bodies produced using the gas metal arc directed energy deposition process followed by solution annealing. The results showed the tensile behavior over a range of temperatures was comparable to wrought material. No variation in tensile behavior was observed with change in tensile sample orientation relative to the build direction. Room temperature Charpy V-notch absorbed energy toughness was comparable to wrought material. Large grain sizes were observed in the metallographic samples, indicating that lowering the solution anneal temperature may be worthwhile. The results of surface and volumetric examination were acceptable when compared to forged material acceptance criteria. Together these results suggest that GMA-DED can produce acceptable materials properties comparable to forged materials requirements.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 951-961, October 11–14, 2016,
... compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds. creep rupture strength creep rupture test dissimilar joint flux cored arc welding flux cored wires gas metal arc welding heat...
Abstract
View Papertitled, Creep Rupture Strength of Dissimilar CB2-P92 FCW Joint Welds
View
PDF
for content titled, Creep Rupture Strength of Dissimilar CB2-P92 FCW Joint Welds
As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1388-1396, October 22–25, 2013,
... tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years...
Abstract
View Papertitled, Corrosion Characteristics of Alloy622 Weld Overlay for Waterwall Tubes in Coal Fired Boilers
View
PDF
for content titled, Corrosion Characteristics of Alloy622 Weld Overlay for Waterwall Tubes in Coal Fired Boilers
Recently, boiler waterwall tube damage such as fireside corrosion and circumferential cracking in low NOx environments has become a serious issue in Japan, despite the typical use of relatively lower sulfur content coal is typically being used than in US. Thermal spray coating has been the most popular method for tube protection in Japan, and thermal spray coated tubes have been used for this purpose. However, extensive damage to thermal spray coating tubes from cracking and exfoliation has been recently experienced. It has been reported that the thermal fluctuations occurring due to operational changes create alternating stress, leading to cracking and exfoliation of the thermal sprayed thin coating. Corrosion-resistant weld overlays, such as Type 309 stainless steel (in sub-critical boilers) and Alloy 622 (in sub-critical and super-critical boilers), are commonly used to protect boiler tubes from corrosion in low NOx coal fired boilers in U.S. In order to develop a fundamental understanding of the high temperature corrosive behavior of Alloy 622 weld overlay, gaseous corrosion testing and certain mechanical tests for consideration of long-term aging were undertaken. After four years of service in the low NOx combustion environment of a coal fired supercritical boiler, field tests on Alloy 622 weld overlay panels are in continuation. This paper describes the field test behavior of Alloy 622 weld overlay panels installed in a Japanese supercritical boiler, the laboratory results of weight loss corrosion testing, and the results of cyclic bend tests with overlay welded tubes related to aging.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 270-283, February 25–28, 2025,
... seamless production routes. Alloy 740H welded tube was successfully fabricated and re-drawn to several relevant tube sizes. Since traditional mechanical testing samples could not be removed from the thin-wall tubing, full-sized tubes were used for tensile, fatigue, and vessel testing (internally...
Abstract
View Papertitled, Investigation into Creep Strength of Inconel Alloy 740H Thin-Walled Welded Tubing for Concentrating Solar Power Applications
View
PDF
for content titled, Investigation into Creep Strength of Inconel Alloy 740H Thin-Walled Welded Tubing for Concentrating Solar Power Applications
To improve the economics of critical components, such as receivers and heat exchangers, for Generation 3 (Gen 3) concentrating solar power (CSP) plants, research was conducted to understand how manufacturing impacts the high-temperature performance of various tube production routes. Gen 3 CSP components are expected to require the use of heat-resistant nickel- based alloys due to the elevated operating temperatures in designs carrying molten salt or supercritical CO 2 . INCONEL alloy 740H (alloy 740H) was investigated as an alternative to UNS N06230 (alloy 230) as it possesses superior high-temperature creep strength which can lead to overall reductions in material cost. A key challenge is understanding how autogenous seam welding with and without re-drawing can be used to manufacture thin-wall tubing for CSP receivers and heat-exchangers to further reduce costs over traditional seamless production routes. Alloy 740H welded tube was successfully fabricated and re-drawn to several relevant tube sizes. Since traditional mechanical testing samples could not be removed from the thin-wall tubing, full-sized tubes were used for tensile, fatigue, and vessel testing (internally pressurized creep- rupture) which was critical to understanding the weld performance of the manufactured product forms. The generated vessel test data exhibited a creep strength reduction when compared to wrought product with no clear trend with temperature or test duration. It was found that redrawing the welded tubes improved the creep strength to approximately 82% of the wrought material performance and elevated temperature tensile and fatigue behavior exceeded 85% of the design minimums. Detailed, post-test characterization found that nano-sized carbides formed during the laser seam-welding process remained stable after multiple solution-annealing steps, which restricted grain growth, and impacted the time-dependent performance. This paper will focus on the time-dependent behavior of the examined welded and redrawn tubes, supporting metallographic evidence, and give perspective on future considerations for using alloy 740H in CSP components.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 366-376, October 3–5, 2007,
... over Grade 92, targeting 100,000 creep hours at 600°C. Complementing the mechanical testing, a parallel microstructural investigation program was launched to evaluate structural evolution and gain deeper insights into boron's role as a creep-strengthening element in advanced ferritic-martensitic steels...
Abstract
View Papertitled, Creep Behavior and Microstructural Analysis of FB2 Trial Rotor Steel
View
PDF
for content titled, Creep Behavior and Microstructural Analysis of FB2 Trial Rotor Steel
The development of new ferritic-martensitic steels for rotor applications was a primary focus of the joint research projects COST 501 and COST 522. During COST 501, multiple trial compositions of 9-10% chromium steels underwent comprehensive testing, with the COST 522 project ultimately selecting the most promising candidate, FB2, a 10% Cr steel containing cobalt and boron additions, notably without tungsten. Società delle Fucine (SdF) successfully produced an FB2 prototype rotor using a conventional manufacturing process involving ladle furnace and vacuum degassing techniques. A comprehensive creep test program was initiated to characterize the full-size component's properties, with results demonstrating consistency with laboratory material performance in both creep resistance and ductility. The extensive testing, which exceeded 30,000 hours, aimed to achieve a 15-20 MPa improvement over Grade 92, targeting 100,000 creep hours at 600°C. Complementing the mechanical testing, a parallel microstructural investigation program was launched to evaluate structural evolution and gain deeper insights into boron's role as a creep-strengthening element in advanced ferritic-martensitic steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 449-460, February 25–28, 2025,
... Abstract This study demonstrates the Electro-Thermal Mechanical Testing (ETMT) system's capability to analyze the thermo-mechanical behavior of Inconel 718 (IN718) at a heating rate of 5 °C/s, achieving temperatures up to 950 °C. The temperature profile peaks at the sample's center...
Abstract
View Papertitled, Investigating the Microstructural Evolution of Inconel 718 under a Controlled Thermal Gradient
View
PDF
for content titled, Investigating the Microstructural Evolution of Inconel 718 under a Controlled Thermal Gradient
This study demonstrates the Electro-Thermal Mechanical Testing (ETMT) system's capability to analyze the thermo-mechanical behavior of Inconel 718 (IN718) at a heating rate of 5 °C/s, achieving temperatures up to 950 °C. The temperature profile peaks at the sample's center and is approximately 25 °C at the extremes. Upon reaching 950 °C, the sample was aged for 30 hours before being rapidly quenched. This process froze the microstructure, preserving the phase transformations that occurred at various temperatures across the temperature parabolic gradient, which resulted in a complex gradient microstructure, providing a comprehensive map of phase transformations in IN718. The integration of thermal measurement, COMSOL modeling, scanning electron microscopy enabled a thorough characterization of the microstructural evolution in IN718, linking observed phases to the specific temperatures which provided a rapid screening of the effect of using different heating treatment routes.
Proceedings Papers
Krzysztof Cieszyński, Władysław Osuch, Maciej Kaczorowski, Stanisław Fudali, Aleksandra Czyrska-Filemonowicz
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1220-1231, October 22–25, 2013,
... 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests...
Abstract
View Papertitled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
View
PDF
for content titled, Microstructure and Properties of 12Cr2MoWVTiB Steel for Membrane Walls
Research on low-alloyed, heat-resistant 12Cr2MoWVTiB steel, implemented in China to power plants in 50’s last century, was performed to investigate a possibility of its application for pressure elements of boilers, in particular for membrane walls. The microstructure of the as-received 12Cr2MoWVTiB tube, investigated by light microscopy, scanning- and transmission electron microscopy, consists of ferritic grains with some bainite areas between them as well as primary carbides (MC) and secondary carbides (VC, M 23 C 6 , M 6 C) formed during tempering of the steel. Results of mechanical tests of 12Cr2MoWVTiB welded joints (butt- and fillet welded joints) as well as microstructure analyses of are satisfactory.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 627-644, October 3–5, 2007,
... Abstract The Institute for Materials Science, Welding and Forming (IWS) conducts extensive research on modern martensitic 9-12% Cr steels intended for use in environmentally friendly power plants. Their comprehensive research program encompasses mechanical testing of base and weld metals...
Abstract
View Papertitled, Application of a Comprehensive R&D Concept to Improve Long-Term Creep Behavior of Martensitic 9-12% Cr Steels
View
PDF
for content titled, Application of a Comprehensive R&D Concept to Improve Long-Term Creep Behavior of Martensitic 9-12% Cr Steels
The Institute for Materials Science, Welding and Forming (IWS) conducts extensive research on modern martensitic 9-12% Cr steels intended for use in environmentally friendly power plants. Their comprehensive research program encompasses mechanical testing of base and weld metals, analysis of creep and damage mechanisms, weldability studies, microstructural evolution during creep, mathematical modeling of precipitation and coarsening kinetics, and simulation of complex heat treatments and creep deformation behavior. Through these interconnected projects, which are briefly described, IWS develops a thorough understanding of these materials while working toward a quantitative model of their creep behavior.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1116-1126, October 22–25, 2013,
... Abstract Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J...
Abstract
View Papertitled, Effect of Copper Addition on the Toughness of New Z-Phase Strengthened 12% Chromium Steels
View
PDF
for content titled, Effect of Copper Addition on the Toughness of New Z-Phase Strengthened 12% Chromium Steels
Two Z-phase strengthened test steels with similar chemical composition were studied. The main difference in composition is the addition of 1 wt% Cu into one of the steels (referred to as “ZCu”). Mechanical testing was performed. The impact strength is very different: 3 J vs. 46.3 J, for the original and the Z-Cu steel, respectively. In the original steel that contains no Cu, much more Laves-phase (Fe 2 (W,Mo)) precipitates had formed along the prior austenite grain boundaries than in the steel with Cu addition. This is believed to be the reason for the difference in impact strength. Furthermore, the Cu addition also influenced the morphology of Laves-phase precipitates; fine rod-shaped instead of coarse equiaxed Laves-phase particles were observed in Z-Cu steel in comparison to the original steel. No partitioning of Cu into the Laves-phase particles was detected by using atom probe tomography (APT). The main function of Cu seems to be the formation of Cu precipitates that act as nucleation site for Laves-phase.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1067-1076, August 31–September 3, 2010,
...-wall pipe. The integrity of the weldment was confirmed with metallurgical investigation, mechanical testing and long term creep rupture test. It is proved that the narrow gap HST welding procedure can meet the requirements for Ni based or Fe-Ni based alloys and provides excellent strength properties...
Abstract
View Papertitled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
Continuous and active works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants in Europe, United States and also Japanese national project has launched in 2008. In this new Japanese project Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is one of the candidate materials for boiler tube and pipe as well as Ni based alloys such as well-known Alloy617, Alloy263 and Alloy740. The most important issue in boiler fabrication is the welding process of these alloys and long-term reliability of their weldments. Authors investigated the weldability of HR6W thick-wall pipe. The integrity of the weldment was confirmed with metallurgical investigation, mechanical testing and long term creep rupture test. It is proved that the narrow gap HST welding procedure can meet the requirements for Ni based or Fe-Ni based alloys and provides excellent strength properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
.... Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material. chemical composition creep testing deformation ferritic stainless steel microstructure...
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
1