Skip Nav Destination
Close Modal
Search Results for
martensite transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 106 Search Results for
martensite transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1146-1159, October 25–28, 2004,
... to the long-term creep strength are evaluated. The basic strengthening is provided by the martensitic transformation that allows the formation of a sub-grain structure from the martensite laths. The sub-grain boundaries are stabilized by precipitates, mainly M 23 C 6 ; within the sub-grains, fine nitride...
Abstract
View Paper
PDF
The development of 9-12% chromium steels during the last twenty years is reviewed. The significant increases in creep strength that have been achieved by minor alloying additions of V, Nb, W, Mo, N and B are discussed and the mechanisms by which the individual elements contribute to the long-term creep strength are evaluated. The basic strengthening is provided by the martensitic transformation that allows the formation of a sub-grain structure from the martensite laths. The sub-grain boundaries are stabilized by precipitates, mainly M 23 C 6 ; within the sub-grains, fine nitride and carbonitride precipitates interact with dislocations, thereby enhancing the strength. The relative contributions of the martensitic transformation and the various precipitates to the overall creep strength of the steels are assessed. Of particular importance for the long-term creep strength is the stability of the microstructure, especially the time dependent coarsening of the various precipitates and the possible formation of additional phases, such as Laves phase (Fe 2 (W,Mo) and the Z phase (CrNbN). It is shown that microstructural changes that occur during exposure at anticipated service temperatures have a large impact on the strength and these changes must be taken into account in the derivation of long-term design stresses. Finally, the potential for achieving further increases in the creep strength of 9-12% chromium steels is discussed, especially in view of the need for higher chromium contents to ensure adequate steam oxidation resistance.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1160-1167, October 25–28, 2004,
... thermomechanical treated samples without magnetic field showed some improvement in creep strength comparing with ordinarily normalized and tempered specimens. Further improvement was observed in the specimen that had been exposed to a magnetic field during transformation into the martensite. From the result...
Abstract
View Paper
PDF
Effect of thermomechanical and magnetic treatment on creep characteristics of advanced heat resistant ferritic steels for USC power plants has been investigated to explore fundamental guiding principles for improving creep rupture strength at elevated temperatures over 600°C. A model steel with a composition of Fe-0.08C-9Cr-3.3W-3Co-0.2V-0.05Nb-0.05N-0.005B-0.3Si-0.5Mn (in mass%) has been prepared by vacuum induction furnace. Creep tests at 650 °C and microstructural observations were performed on the thermomechanical and magnetic treated specimens after tempering. New thermomechanical treated samples without magnetic field showed some improvement in creep strength comparing with ordinarily normalized and tempered specimens. Further improvement was observed in the specimen that had been exposed to a magnetic field during transformation into the martensite. From the result of microstructural observation, it was found that the finely distributed precipitates such as MX and M 23 C 6 caused this improvement. And it was suggested that the magnetic treatment at martensitic transformation increase the precipitation sites during tempering, resulting in increasing the amount and preventing the growth of the precipitates.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
... will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults...
Abstract
View Paper
PDF
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 482-490, October 22–25, 2013,
... with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear...
Abstract
View Paper
PDF
Hardfacing alloys are commonly used for wear- and galling-resistant surfaces for mechanical parts under high loads, such as valve seats. Cobalt-based Stellite, as well as, stainless-steel-based Norem02 and Tristelle 5183 alloys show similar microstructural features that correlate with good galling resistance. These microstructures contain hard carbides surrounded by a metastable austenite (fcc) phase that transform displacively to martensite (hcp or bcc or bct) under deformation. As a result, the transformed wear surface forms a hard layer that resists transition to a galling wear mechanism. However, at elevated temperature (350°C), the stainless steel hardfacing alloys do not show acceptable galling behavior, unlike Stellite. This effect is consistent with the loss of fcc to bcc/bct phase transformation and the increase in depth of the heavily deformed surface layer. Retention of high hardness and low depth of plastic strain in the surface tribolayer is critical for retaining galling resistance at high temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 365-372, October 15–18, 2024,
... to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built...
Abstract
View Paper
PDF
Modified 9Cr-1Mo steel was manufactured via laser powder bed fusion (LPBF) using gas atomized powders under various building conditions. Dense samples were obtained at an energy density of 111-125 J/mm 3 . As-built samples were subjected to a normalization and tempering heat treatments. The microstructure of the as-built sample exhibits a duplex structure, comprising coarse columnar δ-ferrite grains and fine martensite grains. In addition, a small amount of retained austenite phase was observed at the interface between δ-ferrite and martensite. The formation of δ-ferrite is attributed to the extremely rapid solidification that occurs during the LPBF process, while martensite is obtained through the phase transformation because of the thermal cycles experienced during the process. The area fraction of δ-ferrite and martensite can be controlled by adjusting the LPBF parameters. Typical as-built microstructure morphology characterized by the columnar δ- ferrite was eliminated after the heat treatments, resulting in a tempered martensitic microstructure that is identical with that obtained through the conventional process. However, an increase in prior austenite grain size was observed when the area fraction of δ-ferrite in the as-built condition was high, due to faster phase transformation kinetics of martensite than that of δ-ferrite during the normalization. This suggests that the prior austenite grain size can be controlled by optimizing the area fraction of δ-ferrite and martensite in the as-built microstructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 821-829, October 21–24, 2019,
... Abstract High-temperature shape memory alloys (HTSMAs) are expected to be utilized for actuators in high temperature environments such as thermal power plants and jet engines. NIMS has designed TiPd shape memory alloys because high martensitic phase transformation temperature of TiPd around 570...
Abstract
View Paper
PDF
High-temperature shape memory alloys (HTSMAs) are expected to be utilized for actuators in high temperature environments such as thermal power plants and jet engines. NIMS has designed TiPd shape memory alloys because high martensitic phase transformation temperature of TiPd around 570 ° C is expected to be high-temperature shape memory alloys. However, the strength of the austenite phase of TiPd is low and the perfect recovery was not obtained. Then, strengthening of TiPd by addition of alloying elements has been attempted, but the complete recovery was not obtained. Therefore, high entropy alloys (HEA, multi-component equiatomic or near equiatomic alloys) were attempted for HTSMA. The severe lattice distortion and the sluggish diffusion in HEA are expected to contribute strong solid-solution hardening of HTSMA. In this study, multicomponent alloys composed of Ti-Pd-Pt-Ni-Zr were prepared and the phase transformation, shape memory properties, and mechanical properties were investigated.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1160-1169, October 11–14, 2016,
... and a single phase transformation to martensite on cooling. Table 2 shows the phase transformation temperatures from dilation curves of the CG and FG HAZ simulations. From these dilation curves, the Ac1 and Ac3 temperature were measured to be 880oC and 920oC, respectively. Figure 2: Dilation curves for the CG...
Abstract
View Paper
PDF
Grade 91 steel has been found to be susceptible to Type IV cracking in the base metal heat affected zone (HAZ). In order to better understand this type of failure, a study on the metallurgical reactions occuring within the HAZ was conducted, particularly within the fine grained (FG) and intercritical (IC) regions where Type IV cracking is most commonly found to occur. The course grained (CG), FG and IC regions of the HAZ in Grade 91 steel were simulated using a Gleeble 3800 Thermo-Mechanical Simulator. A dilatometer was used to determine the phase transformations occuring during simulation of weld thermal histories. For the first time, it was shown that ferrite can form in the IC HAZ of Grade 91 steel welds. The magnitude of the ferrite transformation was observed to decrease with faster cooling rates. The presence of ferrite in the simulated IC HAZ microstructure was shown to decrease the high temperature tensile strength and increase the high temperature elongation compared to HAZ regions that did not undergo ferrite transformation. Welding parameters such as heat input, preheat and interpass temperature can be selected to ensure faster cooling rates and reduce or potentially avoid formation of ferrite in the IC HAZ.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1250-1261, October 21–24, 2019,
... and the successful transformation of trial melt behaviour to large components led to the start of industrial production for new USC power plant projects in Germany, USA and Asia, beginning in 2007. 2. IMPROVEMENTS ON COST FB2 STEEL At the time, the best commercial available martensitic creep resistant 9% Cr-steel...
Abstract
View Paper
PDF
Approximately 75% of the worldwide energy supply is based on fossil energy but the discussions on CO 2 emission require improvements of the conventional power technologies and also an increase of renewable energy resources. Over the past 40 years, enormous efforts, especially in the development of new materials, were made to establish the technology for the ultra-supercritical power plants, which are the standard of today’s power generation. For decades voestalpine Boehler Special Steel has been a full package supplier of customized high quality special steels and forgings with close relationships to plant manufacturers to provide products ahead of their time. This paper reports on improvements and research activities of the currently best available martensitic 9% Cr steel FB2 and the latest generation, the so-called MarBN steels, raising the operating temperatures of the 9% Cr steel class from 620 °C to 650 °C. Increasing the operating temperature requires adaptations in processes and manufacturing methods to adjust optimized microstructures with improved toughness properties and increased creep rupture strength at the same time. The microstructure of two Boron containing 9% Cr steels, FB2-2 and NPM1, developed within the framework of COST / KMM-VIN, have been investigated comparatively after different heat treatments and discussed after creep rupture tests at 650°C. The results show a dependency of the creep rupture strength on the stability of precipitates and the creep rupture time of both steels was increased by more than 30 % without negatively affecting the creep rupture strain and impact values.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 123-134, October 21–24, 2019,
... strength creep rupture test creep strength enhanced ferritic steel martensitic stainless steel phase transformations post weld heat treatment quenching dilatometers thermodynamic calculation Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24...
Abstract
View Paper
PDF
Creep strength enhanced ferritic steels like T/P 91 and T/P 92 are widely used for the fabrication of pressure vessel components in the petro-chemical and thermal power industry. Today, a new generation of 9-12% Cr CSEF steels like MARBN, Save12AD, G115 and Super VM12 are entering into the market. All CSEF steels require an accurate post-weld heat treatment after welding. This paper discusses the impact of chemical composition on Ac1 as well as the transformation behavior during post-weld heat treatment in a temperature range below and above Ac1. The Ac1 temperature of weld metals with variations in chemical composition has been determined and thermodynamic calculations has been carried out. Simulations of heat treatment cycles with variations in temperature have been carried out in a quenching dilatometer. The dilatation curves have been analyzed in order to detect any phase transformation during heating or holding at post weld heat treatment. Creep rupture tests have been carried out on P91 and Super VM12 type weld metals in order to investigate the effect of sub- and intercritical post weld heat treatment on creep rupture strength.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 478-485, October 11–14, 2016,
.... In contrast, the structural changes in the gage and neck sections were characterized by transformation of the tempered martensite lath structure into relatively coarse subgrain structure. The formation of a well-defined subgrain structure in the gage and neck sections was accompanied by the coarsening of M 23...
Abstract
View Paper
PDF
Structural changes in P92-type steel after creep at temperature of 600°C under a stress of 140 MPa were investigated. The steel was solution treated at 1050°C and tempered at 780°C. The structure in the grip portion of the creep specimen changed scarcely after creep exposure for 6876 h. In contrast, the structural changes in the gage and neck sections were characterized by transformation of the tempered martensite lath structure into relatively coarse subgrain structure. The formation of a well-defined subgrain structure in the gage and neck sections was accompanied by the coarsening of M 23 C 6 carbides and precipitations of Laves phase during creep. Mechanisms of grain boundary pinning by precipitates are discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1127-1138, October 22–25, 2013,
..., while at first fine grains form at grain boundaries in the 9Cr-boron steel by diffusive transformation and then martensitic transformation takes place inside the grain [13]. Using a binding energy of 62.7 kJ mol-1 [15] reported for type 316 stainless steel, segregation of boron at grain boundaries...
Abstract
View Paper
PDF
The addition of boron without the formation of any boron nitrides during normalizing heat treatment at high temperature minimizes the degradation in creep strength of both base metal and welded joints of 9Cr steel at 650 °C and long times. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the segregation is essential for the reduction of coarsening rate of M 23 C 6 carbides in the vicinity of PAGBs, enhancing boundary and subboundary hardening, and also for the production of same microstructure between the base metal and heat-affected-zone (HAZ) in welded joints, indicating no Type IV fracture in HAZ. Excess addition of boron and nitrogen promotes the formation of boron nitrides during normalizing, which reduces the soluble boron concentration and accelerates the degradation in creep rupture ductility at long times. 9Cr- 3W-3Co-VNb steel with 120 - 150 ppm boron and 60 - 90 ppm nitrogen (MARBN) exhibits not only much higher creep strength of base metal than Gr.92 but also substantially no degradation in creep strength due to Type IV fracture at 650 °C. The pre-oxidation treatment in Ar gas promotes the formation of protective Cr 2 O 3 scale on the surface of 9Cr steel, which significantly improves the oxidation resistance in steam at 650 °C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 586-595, October 22–25, 2013,
... boundary. Peaks at approximately 60o, 53o, and 6.5o misorientation angles can be distinguished in the diagrams. These angles are those of block boundaries in martensite transformation, following the 592 Kurdjumov Sachs (K S)[6] and Nishiyama Wasserman (N W)[7][8] rules. Misorientation angle 6.5o does...
Abstract
View Paper
PDF
In order to study the effect of precipitation strengthening by MX precipitates on the restriction of microstructure degradation in 9 mass% Cr ferritic heat-resistant steels, V, Nb additioned model steels were evaluated by microstructure analysis through TEM and EBSD with reference to the creep test and creep interrupting test. VN precipitation increased the creep strength if the content was higher than 0.02%. Simultaneous addition of Nb and V in the specimen resulted in the complex NbC-VN precipitates even in the as-heat-treated specimens. The coherent and fine-needle-type VN was also detected in the steel. These precipitates are expected to increase the creep strength according to the creep strain curves. V variation up to 0.02% did not affect the crystallographic character of the grain boundary in the as-heat-treated specimens. Nb variation affected the crystallographic character of the grain boundary significantly because of the grain refinement effect of NbC. VN precipitation during the creep test restricted the crystallographic misorientation-angle-profile degradation. Integrating all intragranular precipitates, VN, restricts the crystallographic degradation significantly. The long-term creep test results and the precise precipitation analysis will be disclosed by the presentation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 253-264, October 21–24, 2019,
... that the simulated HAZ regions could be classified as; (1) the completely transformed (CT) region, with complete dissolution of pre-existing precipitates and complete reaustenitisation; (2) the partially transformed (PT) region, exhibiting co-existing original martensite with nucleating austenite microstructures...
Abstract
View Paper
PDF
For VM12-SHC 11-12 wt. % Cr steel, there have been no systematic investigations to define the regions or characterise the microstructures within the heat-affected zone (HAZ) of weldments. In similar steels, these regions relate to the Ac 1 and Ac 3 transformation temperatures and can affect weldment performance. In this study, controlled thermal cycles were applied to VM12-SHC parent metal using a dilatometer and the Ac 1 and Ac 3 temperatures were measured for various heating rates. The Ae 1 and Ae 3 temperatures were also calculated by thermodynamic equilibrium modeling. Through dilatometry, thermal cycles were then applied to simulate the microstructures of the classically defined HAZ regions. The microstructural properties of each simulated material were investigated using advanced electron microscopy techniques and micro-hardness testing. It was found that the simulated HAZ regions could be classified as; (1) the completely transformed (CT) region, with complete dissolution of pre-existing precipitates and complete reaustenitisation; (2) the partially transformed (PT) region, exhibiting co-existing original martensite with nucleating austenite microstructures with partial dissolution of precipitates; and (3) the over tempered (OT) region, with no phase transformation but precipitate coarsening and decreased hardness.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 328-337, October 15–18, 2024,
... of physics, that the microstructure cannot be homogeneous. This is not the case for martensitic steel grades, because there is no critical cooling speed, the final microstructure is always martensite and therefore is a more homogeneous phase distribution. On the other hand, the martensite transformation...
Abstract
View Paper
PDF
The voestalpine foundry group, operating at locations in Linz and Traisen, Austria, specializes in heavy steel casting components ranging from 1 to 200 tons for power generation, oil and gas, chemical processing, and offshore applications. Their manufacturing expertise encompasses high-alloyed martensitic 9-12% Cr-steels and nickel-based Alloy 625, particularly for ultra-supercritical (USC) and advanced USC power generation systems operating at temperatures from 600°C to over 700°C. The production of these complex, thick-walled components relies on advanced thermodynamic calculation and simulation for all thermal processes, from material development through final casting. The foundries’ comprehensive capabilities include specialized melting, molding, heat treatment, non-destructive testing, and fabrication welding, with particular emphasis on joining dissimilar cast, forged, and rolled materials. Looking toward future innovations, the group is exploring additive manufacturing for mold production and robotic welding systems to enhance shaping and surface finishing capabilities.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 939-950, October 11–14, 2016,
...°C, so that the previous weld passes can be allowed to have adequate amount of martensite transformation before the next round of welding thermal cycle is applied. After the completion of welding, it is necessary to cool the whole weld joint down below 100°C. This should result in the full...
Abstract
View Paper
PDF
Despite the significant progress achieved in power generation technologies in the past two decades, finding effective solutions to further reduce emissions of harmful gases from thermal power plant still remains the major challenge for the power generation industry as well as alloy material developers. In the European material programmes COST 522 and COST 536, based on the existing 9-12%Cr creep resisting steels, an advanced 9%Cr-Mo martensitic alloy, C(F)B2 (GX13CrMoCoVNbNB9-2-1) alloy has been developed. By modification through alloying of boron and cobalt and together with other micro-adjustment of the composition, C(F)B2 alloys has showed very encouraging properties. The current paper summaries the development and evaluation of the matching filler metals for C(F)B2 grade. The design of the filler metal composition is discussed and comparison is made with the parent materials in respect to the alloy additions and microstructure. The mechanical properties of the weld metals at ambient temperature are examined. Creep properties of both undiluted weld metals and cross-weld joints are examined through stress rupture test and the data are evaluated and compared with those of the base alloy and other existing 9%Cr-Mo creep resisting steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 90-95, October 21–24, 2019,
.... In conventional ferritic heat resistant steels, M23C6 carbide or MX carbonitride precipitates are used to strengthen the martensitically transformed matrix. Coarsening and decomposition of the precipitates occur during long term creep, which results in a degradation of the strength of the materials [1,2]. Laves...
Abstract
View Paper
PDF
The formation of periodically arrayed rows of very fine Fe 2 Hf Laves phase particles was recently found in 9 wt. % chromium ferritic matrix through interphase precipitation along a reaction path of δ-ferrite → γ-austenite + Fe 2 Hf with a subsequent phase transformation of the γ phase into the α-ferrite phase. One of the problems on the formation of the fine Laves phase dispersion is a poor heat treatability; the interphase precipitation (δ-Fe→γ-Fe+Fe 2 Hf) is competitive with the precipitation of Laves phase from the δ phase in the eutectoid-type reaction pathway (δ→δ+Fe 2 Hf). In the present work, the effect of supersaturation on the precipitation of Laves phase from δ phase (δ→δ+Fe 2 Hf) and the δ→γ transformation in the reaction pathway was investigated by changing the Hf and Cr contents. The results obtained suggest that it is effective to have a high supersaturation for the precipitation of Laves phase and an adequately high supersaturation for the δ→γ transformation at the same time in order to widen the window of the interphase precipitation
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... of martensite (M), Figure 5b. A phase transformation that started in the temperature range of upper bainite (UB) was found in the cooling curve with t8/5 of 23.8 s. It was followed by two subsequent transformations that occurred in the temperature ranges of lower bainite and martensite, Table 3. Advanced...
Abstract
View Paper
PDF
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 517-527, October 15–18, 2024,
...), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making...
Abstract
View Paper
PDF
High-performance Ferritic (HiperFer) steels represent a promising materials innovation for next-generation thermal energy conversion systems, particularly in cyclically operating applications like concentrating solar thermal plants and heat storage power plants (Carnot batteries), where current market adoption is hindered by the lack of cost-effective, high-performance materials. HiperFer steels demonstrate superior fatigue resistance, creep strength, and corrosion resistance compared to conventional ferritic-martensitic 9-12 Cr steels and some austenitic stainless steels, making them potentially transformative for future energy technologies. This paper examines the microstructural mechanisms underlying HiperFer’s enhanced fatigue resistance in both short and long crack propagation, while also presenting current findings on salt corrosion properties and exploring potential alloying improvements for fusion reactor applications, highlighting the broad technical relevance of these innovative materials.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 843-854, October 15–18, 2024,
... Abstract In dissimilar welds between martensitic stainless steel F6NM and nitrogen-strengthened austenitic stainless steel FXM-19, type 209 austenitic welding consumables are used to align with the mechanical properties and chemical composition of FXM-19, with F6NM welds requiring post-weld...
Abstract
View Paper
PDF
In dissimilar welds between martensitic stainless steel F6NM and nitrogen-strengthened austenitic stainless steel FXM-19, type 209 austenitic welding consumables are used to align with the mechanical properties and chemical composition of FXM-19, with F6NM welds requiring post-weld heat treatment (PWHT) to restore ductility and toughness, raising concerns about sigma embrittlement in ER209 butter welds. This study investigated the mechanical properties and microstructure of F6NM+FXM-19 dissimilar welds, finding no detrimental sigma phase formation in the butter (PWHT) and groove weld metal (as welded) across various welding processes, indicating no sigma phase transformation due to PWHT. Submerged arc welding (SAW) and gas tungsten arc welding (GTAW) demonstrated good mechanical properties, while Gas Metal Arc Welding with 100% Ar gas shield (GMAW 100% Ar) could not be properly evaluated due to weld defects. SAW and GTAW were deemed suitable for this dissimilar weld joint, with several welding processes providing acceptable results using ER209 filler material for fabricating pressure vessels requiring F6NM to XM-19 joints.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 246-252, October 21–24, 2019,
... temperature below solidification, i.e. no martensitic transformation occurs. Furthermore these advanced steels contain 17 wt.% Cr to ensure avoidance of (Fe,Crphase formation and to guarantee sufficient steam oxidation resistance up to 650 °C [2][3], while state of the art 9 12 % Cr advanced ferritic...
Abstract
View Paper
PDF
More efficient, sustainable, flexible and cost-effective energy technologies are strongly needed to fulfil the new challenges of the German “Energiewende”. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Hence, advanced materials are needed. The present study focuses on stainless, high strength, ferritic (non-martensitic) steel grades, regarding thermal treatment effects on particle evolution. The heat treatment includes variations, e.g. a two phase pre heat treatment. Effects of the treatment were analysed and connected to creep performance. Experiments at differently heat treated materials show promising improvement of creep performance. These results can be linked to the stability and evolution of strengthening Laves phase particles.
1