Skip Nav Destination
Close Modal
Search Results for
manufacturability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 360 Search Results for
manufacturability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 326-335, October 11–14, 2016,
... temperature range of the material. As a result, HR6W is the appropriate material to manufacture high temperature reheater outlet header of A-USC boiler with parameters 620°C /653°C/653°C. advanced ultra-supercritical boilers iron-nickel based alloys nickel-chromium-cobalt-molybdenum alloys reheater...
Abstract
View Paper
PDF
This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable temperature range of the material. As a result, HR6W is the appropriate material to manufacture high temperature reheater outlet header of A-USC boiler with parameters 620°C /653°C/653°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 656-667, October 11–14, 2016,
... “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed...
Abstract
View Paper
PDF
COST FB2 steel alloyed with boron is currently the best available martensitic 9% Cr steel for turbine shafts subjected to steam temperatures up to 620°C and meanwhile introduced into production for application in commercial power plants. Currently several development programs are running to develop materials for further increase of application temperature up to 650°C. For realization of a 650ºC power plant not only creep strength, but also resistance against steam oxidation must be improved by increase of Cr content up to 11-12%. In the past all attempts to develop stable creep resistant martensitic 11-12% Cr steels for 650°C failed due to breakdown in long-term creep strength. Therefore new alloy concepts have been developed by replacing the fine nitride strengthening particles by controlled and accelerated precipitation of the more stable Z phase. Therefore the European project “Z-Ultra” was launched for further development and manufacture of this new alloy type. Saarschmiede participates in this project and contributed by manufacturing trial melts, boiler tubes and a large scale turbine rotor forging. Production experience and test results are presented. In order to exceed the temperature limit of 650°C, only nickel base alloys can be used. One of the most promising candidate alloys for rotor forgings subjected to steam temperatures of 700°C is Alloy 617, which was already intensively investigated. For still higher temperatures in the range of 750°C only γ‘-precipitation hardened nickel base alloys, such as Alloy 263, can be applied. Therefore the “NextGenPower” project was launched and aimed at manufacture and demonstration of parts from Ni-based alloys for application in steam power plants at 750°C. One of the main goals was to develop turbine rotor materials and to demonstrate manufacturability of forgings for full scale turbine rotor parts. Contributing to this project, Saarschmiede has produced for the first time a large rotor forging in the Ni base Alloy 263. Numeric simulations of ingot manufacture, forging and heat treatment have been performed and a large trial rotor forging in Alloy 263 with a diameter of 1000 mm was successfully produced from a triple melt ingot. Experiences in manufacture and test results are presented.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 778-789, October 11–14, 2016,
... impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components...
Abstract
View Paper
PDF
Sufficient energy availability in combination with lowest environmental pollution is a basic necessity for a high living standard in each country. To guarantee power supply for future generations, improved technologies to achieve higher efficiency combined with reduced environmental impact are needed. This challenge is not only aimed to the power station manufacturers, but also to the producers of special steel forgings, who have to handle with more and more advanced materials and complex processes. Bohler Special Steel is a premium supplier of forged high quality components for the power generation industry. This paper reports about experiences in the fabrication of forged components for steam turbines for ultra-supercritical application - from basic properties up to ultrasonic detectability results. The materials used so far are the highly creep-resistant martensitic 9-10% Cr steel class for operating temperatures up to 625°C developed in the frame of the European Cost research program. Additionally our research activities on the latest generation of high temperature resistant steels for operating temperatures up to 650 degree Celsius – the boron containing 9% Cr martensitic steels (MARBN) - are discussed. In order to improve the creep behavior, MARBN steels with different heat treatments and microstructures were investigated using optical microscopy, SEM and EBSD. Furthermore, short term creep rupture tests at 650 degree Celsius were performed, followed by systematic microstructural investigations. As a result it can be concluded, that advanced microstructures can increase the time to rupture of the selected MARBN steels by more than 10 percent.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1036-1045, October 11–14, 2016,
..., permitting the re-use of consolidated best practices for boiler fabrication. In order to evaluate the possibility to produce complete pressure part systems, various tests to manufacture components have been performed on Thor pipes and tubes (i.e. finning, bending, welding) and on Thor forged material (i.e...
Abstract
View Paper
PDF
A new martensitic steel for power generation applications was developed: Tenaris High Oxidation Resistance (Thor) is an evolution of the popular ASME grade 91, offering improved steam oxidation resistance and better long-term microstructural stability, with equal or better creep strength. Thanks to its design philosophy, based on consolidated metallurgical knowledge of microstructural evolution mechanisms, and an extensive development performed in the last decade, Thor was engineered to overcome limitations in the use of ASME grade 91, yet allow being processed in the same fashion, permitting the re-use of consolidated best practices for boiler fabrication. In order to evaluate the possibility to produce complete pressure part systems, various tests to manufacture components have been performed on Thor pipes and tubes (i.e. finning, bending, welding) and on Thor forged material (i.e. flanges). In all cases consolidated industrial best practices used on ASME grade 91 were applied, and resulting properties met ASME requirements.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 506-519, October 25–28, 2004,
... temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings...
Abstract
View Paper
PDF
Within the pursuit of improved economic electricity production with reduced environmental pollution, the European research activities COST 501/522 aimed to develop advanced 9-12%Cr steels for highly stressed turbine components by increasing thermal efficiency through higher steam temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings of this COST grade E steel. Secondly, it reports on the manufacturing of a trial melt of a later 9%Cr steel containing cobalt and boron from COST development, describing its long-term creep behavior, microstructural features responsible for superior creep resistance, and test results including short-term properties, detectable flaw size, and initial creep results for a full-size trial rotor forging.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 35-46, October 21–24, 2019,
..., more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability...
Abstract
View Paper
PDF
The measurement of damage from high temperature solid particle erosion (HTSPE) can be a lengthy process within the laboratory with many lab-based systems requiring sequential heat and cooling of the test piece to enable mass and/or scar volume measurements to be made ex situ. Over the last few years a new lab-based system has been in development at the National Physical Laboratory which has the ability to measure the mass and volume change of eroded samples in situ without the need to cool the sample. Results have previously been shown demonstrating the in situ mass measurement, more recently the in situ volume measurement capability has been added and used to evaluate the erosion performance of additively manufactured materials. Selective laser melting (SLM) is an advanced manufacturing method which is growing in popularity and application. It offers the ability to manufacture low volume complex parts and has been used in rapid prototyping. As the technique has developed there is increasing interest to take advantage of the ability to manufacture complex parts in one piece, which in some case can be more cost and time effective than traditional manufacturing routes. For all the benefits of SLM there are some constraints on the process, these include porosity and defects in the materials such as ‘kissing bonds’, surface roughness, trapped powder and microstructural variation. These features of the processing route may have implications for component performance such as strength, fatigue resistance wear and erosion. To investigate this further SLM IN718 has been used to evaluate factors such as surface roughness, microstructure and morphology on the erosion performance as measured in situ and compared with conventional produced wrought IN718 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process...
Abstract
View Paper
PDF
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 836-841, October 21–24, 2019,
... additive manufacturing (AM) technologies have the potential to create a three-dimensional component. Their mechanical properties are highly dependent on the types of powder processing, but the relationship between microstructures and properties has not been clarified. In this study, the mechanical...
Abstract
View Paper
PDF
Alloy 718 is one of the most widely used for aircraft engine and gas turbine components requiring oxidation and corrosion resistance as well as strength at elevated temperatures. Alloy 718 has been produced in both wrought and cast forms, but metal injection molding and metal-based additive manufacturing (AM) technologies have the potential to create a three-dimensional component. Their mechanical properties are highly dependent on the types of powder processing, but the relationship between microstructures and properties has not been clarified. In this study, the mechanical properties of Alloy 718 manufactured by AM are compared to cast and wrought properties. The electron beam melting processed specimens with strong anisotropy showed higher yield strength, which can be explained by critical resolved shear stress. In addition, the creep deformation showed a complicated behavior which was different from that of wrought alloy. Such abnormal behavior was characterized by γ-channel dislocation activity.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 880-891, October 21–24, 2019,
... Abstract The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has...
Abstract
View Paper
PDF
The Alloys-by-Design approach, involving large-scale CALPHAD calculations to search a compositional range, has been used to isolate a suitable nickel-based superalloy for additive manufacturing (AM) by optimizing the trade-off between processability and increasing strength. This has been done in response to the limited focus on development of new superalloys designed to overcome the limitations of the AM process, specifically the high defect density of parts made from high-performance alloys. Selected compositions have been made using gas atomization, and laser powder-bed fusion AM trials were performed. The resulting properties were evaluated in the as-processed, heat treated and thermally exposed conditions. The assessment, combined with characterization techniques including scanning electron microscopy and atom probe tomography, rationalizes a temperature capability up to and above 850 °C, and demonstrate the opportunity to develop alloys with properties beyond the current state of the art.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1181-1192, October 21–24, 2019,
... operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ...
Abstract
View Paper
PDF
The need to reduce carbon dioxide emissions of new fossil power plants is one of the biggest challenges of mankind in the next decades. In this context increasing net efficiency is the most important aspect which has led to the development of not only new steels for potential plant operation up to 650°C, but also to forged nickel alloys for 700°C and maybe 750°C. For steam temperatures of 700°C Alloy 617 and variants like TOS1x have been already intensively investigated, and manufacturability of large rotor parts was demonstrated. For operation temperatures of 750°C, only the use of γ‘ age-hardenable nickel base alloys is possible. Alloy 263 is one of the most promising alloys for manufacturing large forged components. For this material grade Saarschmiede has produced successfully a large rotor forging for the first time. Considering the complexity in manufacturing large nickel base alloy forgings, the implementation of simulation tools for calculation and optimization of production parameters becomes especially important. Numerical simulation methods are essential to predict material behavior and to optimize material quality-related manufacturing steps. In reference to mechanical properties, microstructure, uniformity of chemical composition FEM computer simulations for the key manufacturing processes re-melting, forging and heat treatment are in application. This paper will present the current status of production of very large prototype nickel base alloy rotor forgings for 700°C and 750°C A-USC power plants. Test results of an Alloy 617 large full scale turbine rotor component recently with improved properties produced will be highlighted. Experiences and results in applying numeric simulation models to ingot manufacturing and forging will also be reported.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1193-1203, October 21–24, 2019,
... Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy...
Abstract
View Paper
PDF
Research and development of 700°C A-USC steam turbine unit needs to be supported by materials with excellent overall performance. Waspaloy is a kind of γ′ phase precipitation hardening superalloy developed by the United States in the 1950s. In the 700°C R&D Plan of Shanghai Turbine Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully meet the requirements of high-temperature blades and bolts of 700°C A-USC unit. It shows that the 700°C A-USC unit high temperature blades and bolts were successfully developed by Shanghai Turbine Plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high...
Abstract
View Paper
PDF
Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability of 800°C with high manufacturability achieved by controlling microstructure stability and segregation property. The 700°C class A-USC materials are the mainstream of current development, and trial production of 10 ton-class forged parts has been reported. However, there have been no reports on the development and trial manufacturing of the A-USC materials with temperature capability of 800°C. In this report, results of trial manufacturing and its microstructure of the developed superalloy which has both temperature capability 800°C and good manufacturability are presented. The trial manufacturing of the large forging, boiler tubes and turbine blades using developed material were successfully achieved. According to short term creep tests of the large forging and the tube approximate 100,000h creep strength of developed material was estimated to be 270MPa at 700 °C and 100MPa at 800°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 215-229, October 22–25, 2013,
... and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued...
Abstract
View Paper
PDF
Inconel alloy 740H was specifically developed for use in coal-fired AUSC boilers. This alloy displays a unique combination of steam and coal-ash corrosion resistance, microstructure stability, creep strength and heavy section weldability. During the past two years Special Metals and Wyman-Gordon have undertaken an intense effort to demonstrate their capability to manufacture full-size boiler components, characterize their properties and simulate field assembly welds. This work was performed according to the requirements of ASME Boiler Code Case 2702 that was recently issued. This paper covers manufacturing of tube and pipe products and property characterization including recent data on the effect of long time exposure on impact toughness of base and weld metal. New data will also be reported on coal ash corrosion of base metal and weld metal. An overview of welding studies focused on integrity of circumferential pipe joints and a discussion of remaining technical issues will be presented.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 304-320, October 22–25, 2013,
.../asm.cp.am-epri-2013p0304 Copyright © 2014 Electric Power Research Institute, Inc. Distributed by ASM International®. All rights reserved. D. Gandy, J. Shingledecker, editors EXPERIENCE IN MANUFACTURE OF HIGH CHROMIUM FORGED ROTOR STEELS A. Di Gianfrancesco, S. Budano, P. Lombardi, M. Paura: Centro Sviluppo...
Abstract
View Paper
PDF
Driven by the need to reduce CO 2 emissions through increased steam temperature and pressure in new power plants, research in Europe led to the development of enhanced high-chromium steels with improved creep resistance and service temperature stability. After years of development, Rotor E, a steel composition created during the COST programs (501, 522, and 536), has become a commercially available product. While traditionally forged and remelted using electroslag remelting (ESR), this paper demonstrates the successful production of large rotor components using a conventional process without ESR, achieved through tailored process control. This paper details Società delle Fucine's (SdF) current production of Rotor E using a conventional route based on ladle furnace and vacuum degassing, as well as the mechanical and creep behaviors of the resulting forged products. Additionally, SdF produced a prototype FB2 rotor using a conventional process. FB2, a 10% Cr steel containing cobalt and boron but lacking tungsten, emerged from the COST 522 program as the best candidate for scaling up from a laboratory experiment to a full-sized industrial component. Notably, the addition of boron effectively improved the microstructure's stability and consequently enhanced the creep resistance of these new, advanced martensitic steels. Finally, the paper will present updates on the long-term characterization program for the FB2 steel trial rotor.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 321-332, October 22–25, 2013,
... Abstract A 9% Cr steel containing cobalt and boron, X13CrMoCoVNbNB9-2-1, has been manufactured by electroslag remelting (ESR) to evaluate its performance and to compare its creep strength and microstructure to a forging made from electroslag hot-topping ingot. The evaluation results confirm...
Abstract
View Paper
PDF
A 9% Cr steel containing cobalt and boron, X13CrMoCoVNbNB9-2-1, has been manufactured by electroslag remelting (ESR) to evaluate its performance and to compare its creep strength and microstructure to a forging made from electroslag hot-topping ingot. The evaluation results confirm that it is possible to produce rotor forgings with homogeneous composition and good properties by the ESR process. The results of creep rupture tests up to 5000 h indicate that the creep strength of the forging made from ESR ingot is similar to that of the forging produced by the electroslag hot-topping process. Martensitic lath microstructures with high density dislocations and the precipitations of M 23 C 6 , VX, NbX and M2X are observed after the quality heat treatments at the center portion of both forgings. There is no large difference in the martensitic lath widths, distributions, and sizes of those particles between both trial forgings.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room...
Abstract
View Paper
PDF
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1-12, October 15–18, 2024,
... Abstract Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy...
Abstract
View Paper
PDF
Ni-based superalloy Haynes 282 is a prime candidate for advanced power generation systems due to its superior fabricability, weldability, and high-temperature performance. Additive manufacturing offers potential cost and time savings for gas turbine components. Wire-arc direct energy deposition can create large components but often requires post-processing treatments, such as hot isostatic pressing (HIP), to address porosity. This study explores a low heat-input, high deposition rate GMAW process to achieve fully dense Haynes 282 without HIP. Twenty-one blocks were deposited, varying travel and wire feed speeds. Initial analysis (visual inspection, microstructural examination, and CT) revealed the impact of build parameters on internal porosity and defects. Scanning electron microscopy provided insights into structural heterogeneity and microstructural properties.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 23-38, October 15–18, 2024,
... Abstract This study examines the corrosion resistance of additively manufactured 316L stainless steel (SS) for nuclear applications across three environments: pressurized water reactor primary water (PWR PW), hot concentrated nitric acid, and seawater. Wire-feed laser additive manufacturing...
Abstract
View Paper
PDF
This study examines the corrosion resistance of additively manufactured 316L stainless steel (SS) for nuclear applications across three environments: pressurized water reactor primary water (PWR PW), hot concentrated nitric acid, and seawater. Wire-feed laser additive manufacturing (WLAM) specimens showed oxidation behavior similar to wrought 316L SS in PWR PW, though stress corrosion cracking (SCC) susceptibility varied with heat treatment. In nitric acid testing, laser powder bed fusion (L-PBF) specimens demonstrated superior corrosion resistance compared to conventional SS, primarily due to improved intergranular corrosion resistance resulting from cleaner feedstock powder and rapid solidification rates that minimized grain boundary segregation. Laser metal deposition (LMD) repair studies in seawater environments successfully produced dense, crack-free repairs with good metallurgical bonding that matched the substrate’s mechanical properties while maintaining corrosion resistance. These results emphasize the importance of corrosion testing for additively manufactured components and understanding how their unique microstructures affect performance.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 74-87, October 15–18, 2024,
... Abstract The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines...
Abstract
View Paper
PDF
The power industry has been faced with continued challenges around decarbonization and additive manufacturing (AM) has recently seen increased use over the last decade. The use of AM has led to significant design changes in components to improve the overall efficiency of gas turbines and more recently, hot-section components have been fabricated using AM nickel-base superalloys, which have shown substantial benefits. This paper will discuss and summarize extensive studies led by EPRI in a novel AM nickel-base superalloy (ABD·900-AM). A comprehensive high temperature creep testing study including >67,000 hours of creep data concluded that ABD-900AM shows improved properties compared to similar ~35% volume fraction gamma prime strengthened nickel-base superalloys fabricated using additive methods. Several different creep mechanisms were identified and various factors influencing high temperature behavior, such as grain size, orientation, processing method, heat treatment, carbide structure, chemistry and porosity were explored. Additional studies on the printability, recyclability of powder, wide range of process parameters and several other factors have also been studied and results are summarized. A summary on the alloy -by-design approach and accelerated material acceptance of ABD-900AM through extensive testing and characterization is further discussed. Numerous field studies and examples of field use cases in ABD-900AM are also evaluated to showcase industry adoption of ABD-900AM.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, October 15–18, 2024,
... Abstract Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized...
Abstract
View Paper
PDF
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
1