Skip Nav Destination
Close Modal
Search Results for
magnetic sensitivity
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11 Search Results for
magnetic sensitivity
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 981-989, October 21–24, 2019,
... of ferromagnetic and optical characteristics of scales, the technology and equipment were developed for on-line measurement based on magnetic sensitivity and granularity behavior. Through numerical simulation and dynamic simulation experiments of scale movement under high temperature and high pressure steam...
Abstract
View Paper
PDF
The oxide exfoliation is one of the main problems that cause the explosion of superheater or reheater, which threaten the safety of power plant units, but there is no direct test method of the particle concentration of the scales in high temperature steam. Based on the study of ferromagnetic and optical characteristics of scales, the technology and equipment were developed for on-line measurement based on magnetic sensitivity and granularity behavior. Through numerical simulation and dynamic simulation experiments of scale movement under high temperature and high pressure steam, calculating method of the particle concertation of scales in the main steam or reheated steam pipeline was retrieved by local sampling concentration.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 694-702, October 21–24, 2019,
... of the steam sample is ongoing and the cooling efficiency of the steam sample is fixed. The magnetic sensitivity detecting device measures the cumulative height of the large scale oxide scale during operation by using the magnetic properties of the scale, and determines the amount of scale in the steam...
Abstract
View Paper
PDF
The spalling of oxide scales at the steam side of superheater and reheater of ultra-supercritical unit is increasingly serious, which threatens the safe and economic operation of the boiler. However, no effective monitoring method is proposed to provide an on-line real-time detection on the spalling of oxide scales. This paper proposes an on-line magnetic non-destructive testing method for oxide granules. The oxide scale-vapor sample from the main steam pipeline forms liquid-solid two-phase flow after the temperature and pressure reduction, and the oxide granules are separated by a separator and piled in the austenitic pipe. According to the difference of the magnetic features of the oxide scales and the austenitic pipe, the oxide granule accumulation height can be detected through the spatial gradient variations of the magnetic induction. The laboratory test results show that the oxide scale accumulation can be accurately calculated according to the spatial gradient changes around the magnetized oxide granules, with the detection error not exceeding 2%.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 581-589, October 11–14, 2016,
... of such crack-like defects on inner walls, and is, in fact, insensitive to such defects due to the impact of such factors as shape, size, location and orientation of such defects. The sensitivity of magnetic flux leakage testing will decrease along with the increase of wall thickness. In other words...
Abstract
View Paper
PDF
To solve crack problems at the tube elbow induced by high depth-to-width ratio longitudinal defects on the inner wall of boiler tube, a number of testing experiments and testing methods have been applied to analysis on the sensitivity and correspondence of such defects, and it has been found that the flattening test has an outstanding advantage to detect such defects. However, according to relevant standards, the judgment is controversy. It can be noted from the research that if a steel tube with a ratio of wall thickness to outer diameter larger than 0.1 is turned prior to the flattening test, to reduce such ratio to be less than or equal to 0.1, the shortcomings in detection and evaluation of such defects specified in the current relevant standards of many countries can be effectively overcome. The method has been proposed and adopted preliminarily in the relevant Chinese standard.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
... Abstract The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test...
Abstract
View Paper
PDF
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
... normalizing temperature or duration can lead to chemical heterogeneity on the macroscale, which has been attributed to an observed loss in creep rupture strength [4]. Similarly, tempering temperature is sensitive to controlling precipitate density and size distributions, with under-tempering not allowing...
Abstract
View Paper
PDF
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... correlate changes in the microstructure and the onset of incipient creep damage, such as triple point cavitation at the grain boundaries. For this technique, measurements by replication technique are taken on crack sensitive areas that are subjected to the higher temperatures and stresses. These areas...
Abstract
View Paper
PDF
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 183-194, October 15–18, 2024,
.... The Olympus X3 (32/128) acquisition unit was used. The sensitivity was of the lateral wave set to 80% screen height. ToFD is selected for the benefit of producing a B scan image of the component and the ability to quickly assess its thickness through the time difference between lateral wave and backwall wave...
Abstract
View Paper
PDF
As part of a Department of Energy (DOE) funded program assessing advanced manufacturing techniques for Small Modular Reactor (SMR) applications, the Nuclear Advanced Manufacturing Research Centre (AMRC) and the Electric Power Research Institute (EPRI) have been developing Electron Beam Welding (EBW) parameters and procedures based upon SA508 Grade 3 Class 1 base material. The transition shell, a complex component connecting the lower assembly to the upper assembly is a shell that flares up with varying thicknesses across its section. The component due to its geometry could be built by near net shape powder metallurgy hot isostatic pressing instead of conventional forging techniques. The demonstrator transition shell here is built from several sub-forging as a training exercise. The complex geometry and joint configuration were selected to assess the EBW as a suitable technique. This paper presents results from the steady state welding in the 60-110 mm material thickness range, showing that weld properties meet specification requirements. Weld quality was assured by Time-of-Flight Diffraction (ToFD). The transition shell was completed by welding a flange to the assembly. The presented transition shell assembly represents 6 welded sections all fabricated in below 100 min total welding time.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 525-536, October 22–25, 2013,
...) would be able to accurately identify these weldment cracks. It was agreed, however that RT would be performed under the direction of Mike Kerr (Xcel Energy NDE Specialist), to possibly identify defective welds. The field experience at Comanche Unit 3 showed that RT was sensitive enough to identify weld...
Abstract
View Paper
PDF
Xcel Energy’s Comanche Unit 3 experienced widespread cracking of T23 membrane wall tubes within the evaporator section, initially occurring during the boiler construction phase, primarily at shop and field tube butt welds. The majority of the tube cracking was attributed to stress-corrosion cracking (SCC), and a lesser number of fabrication-related hydrogen induced cracking (HIC), weld solidification cracking, and brittle cracking within tube swage sections were also experienced. Hundreds of tubes were replaced prior to Unit commissioning, due to both actual tube leaks and those replaced due to weldment cracking and other identified weld defects during radiographic testing. Elevated stress levels and material susceptibility (i.e. hardness in the as-welded condition) were considered the critical factors in the tube cracking.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 333-343, October 22–25, 2013,
... Visual Test Bore Magnetic Particle Test Inspection 14 15 Gashing No7 No1 3 No3 Heat Stability Test 16 Macrostructure observation Mechanical Test Dissection & Investigation 17 Figure 1. Manufacturing process and quality control plan of the trial LP rotor 334 Production of 670 ton ingot Segregation, non...
Abstract
View Paper
PDF
Monoblock low-pressure (LP) turbine rotor shaft forgings for nuclear power plants have been produced from up to 600 ton ingots. However, ingots greater than 600 tons are necessary to increase the generator capacity. Segregation, non-metallic inclusions, and micro porosities inevitably increase with the increase in ingot size. Manufacturing such massive ingots with high soundness is quite difficult. Thus, the development of 650 ton ingot production was carried out in 2010. The 650 ton ingot was dissected and investigated to verify its internal quality. The internal quality of the 650 ton ingot was found to be equal to that of 600 ton ingots. Subsequently, in 2011, we produced a 670 ton ingot, the world’s largest, to produce a trial LP rotor shaft forging with a diameter of 3,200 mm. Results show that the internal quality, mechanical properties, and heat stability are the same as LP rotor shaft forgings made from 600 ton ingots.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
... health. Typical methods are segmented into surface or volumetric types including: magnetic particle, liquid penetrant, radiography and ultrasonic testing (and its variants). The focus of this paper will be on the development of a well-characterized set of damage in carefully controlled cross-weld creep...
Abstract
View Paper
PDF
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... materials are listed in Table 1. The welded joints were prepared as a single V-joint using Gas-Tungsten Arc Welding (GTAW / TIG) process for the root pass, and Manual Metal Arc (MMA) welding for the filler passes. Magnetic particle inspection and ultrasonic testing were conducted after welding to ensure...
Abstract
View Paper
PDF
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.