Skip Nav Destination
Close Modal
Search Results for
life evaluation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 287
Search Results for life evaluation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 466-477, October 11–14, 2016,
... Abstract A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture...
Abstract
View Papertitled, <span class="search-highlight">Evaluation</span> of Long-Term Creep Rupture <span class="search-highlight">Life</span> of Gr.91 Steel by Analysis of On-Going Creep Curves
View
PDF
for content titled, <span class="search-highlight">Evaluation</span> of Long-Term Creep Rupture <span class="search-highlight">Life</span> of Gr.91 Steel by Analysis of On-Going Creep Curves
A methodology is developed for evaluating its creep rupture life from analysis of an on-going creep curve with the aid of an Ω creep curve equation. The method is applied to on-going creep curves of grade 91 steel for evaluating their rupture lives. Quick decrease in creep rupture strength has been reported recently in long-term creep of grade 91 steel. The quick decrease of the steel is discussed by using the rupture lives evaluated. The quick decrease is confirmed in the present study in the time range longer than 3 x 10 4 h at 600°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 690-701, October 22–25, 2013,
...; the results indicated that the damage to the elbow was more severe in the fine-grain heat-affected zone near the inner surface. Furthermore, creep rupture tests were performed using specimens cut from the welded joint of the elbow, and from these results, the remaining life was evaluated using the time...
Abstract
View Papertitled, <span class="search-highlight">Evaluation</span> of Remaining <span class="search-highlight">Life</span> of Gr.91 Welded Elbow Served at USC Plant for Long-Term
View
PDF
for content titled, <span class="search-highlight">Evaluation</span> of Remaining <span class="search-highlight">Life</span> of Gr.91 Welded Elbow Served at USC Plant for Long-Term
Type IV damage was found at several ultra-supercritical (USC) plants that used creep-strength-enhanced ferritic (CSEF) steels in Japan, and the assessment of the remaining life of the CSEF steels is important for electric power companies. However, there has been little research on the remaining life of material that has actually served at a plant. In this study, the damage and remaining life of a Gr.91 welded elbow pipe that served for 54,000 h at a USC plant were investigated. First, microscopic observation and hardness testing were conducted on specimen cut from the welded joint; the results indicated that the damage to the elbow was more severe in the fine-grain heat-affected zone near the inner surface. Furthermore, creep rupture tests were performed using specimens cut from the welded joint of the elbow, and from these results, the remaining life was evaluated using the time fraction rule as almost 110,000 h. Finite-element analysis was also conducted to assess the damage and remaining life, and the results were compared with the experimental results.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 149-160, October 11–14, 2016,
... waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied. advanced ultrasupercritical power plants creep damage evaluation creep-fatigue life nickel-chromium-cobalt-molybdenum...
Abstract
View Papertitled, Creep-Fatigue <span class="search-highlight">Life</span> and Damage <span class="search-highlight">Evaluation</span> of Ni-Based Alloy 617 and Alloy 740H
View
PDF
for content titled, Creep-Fatigue <span class="search-highlight">Life</span> and Damage <span class="search-highlight">Evaluation</span> of Ni-Based Alloy 617 and Alloy 740H
Creep-fatigue lives of nickel-based Alloy 617 and Alloy 740H were investigated to evaluate their applicability to advanced ultrasupercritical (A-USC) power plants. Strain controlled push-pull creep-fatigue tests were performed using solid bar specimen under triangular and trapezoidal waveforms at 700°C. The number of cycles to failure was experimentally obtained for both alloys and the applicability of three representative life prediction methods was studied.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 732-743, October 22–25, 2013,
... this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers...
Abstract
View Papertitled, <span class="search-highlight">Evaluation</span> of Long-Term Creep Rupture <span class="search-highlight">Life</span> of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
View
PDF
for content titled, <span class="search-highlight">Evaluation</span> of Long-Term Creep Rupture <span class="search-highlight">Life</span> of Strength Enhanced High Cr Ferritic Steel on the Basis of Its Temperature Dependence
Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four regions with different values of stress exponent n for creep rupture life commonly in stress-rupture data of the three ferritic steels. Activation energies Q for rupture life in the regions take at least three different values. The values of n and Q decrease in a longer-term region. The decrease in Q value is the cause of the overestimation of long-term rupture life predicted by the conventional TTP methods neglecting the change in Q value. Therefore, before applying a TTP method creep rupture data should be divided into several data sets so that Q value is unique in each divided data set. When this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1228-1239, February 25–28, 2025,
.... The remaining creep life of each material under actual service conditions was evaluated using the Larson-Miller parameter for the test result. Then, the creep life of each material under the service condition was estimated as a summation of the service time at the plants and the remaining creep life...
Abstract
View Papertitled, Estimation of Creep Strength of ASME Grade 91 Type Steel in Actual Service Conditions
View
PDF
for content titled, Estimation of Creep Strength of ASME Grade 91 Type Steel in Actual Service Conditions
The creep strength of the base metals and welded joints of ASME Grade 91 type steel under actual service conditions was investigated using long-term used materials in this study. Creep tests were conducted on the materials used for hot reheat or main steam piping at power plants. The remaining creep life of each material under actual service conditions was evaluated using the Larson-Miller parameter for the test result. Then, the creep life of each material under the service condition was estimated as a summation of the service time at the plants and the remaining creep life. The estimation results were useful for examining the validity of the life evaluation formula in the long-term region because it is extremely difficult to obtain creep rupture data under such conditions owing to the long test duration. The estimated creep lives were compared with creep life evaluation curves, which were regulated for Grade 91 type steel in Japan. Regarding the base metals, the estimation results suggest that Grade 91 pipe-type steel tends to exhibit a shorter life than the 99% confidence lower limit of the evaluation curve of the material. This finding indicated that the life evaluation formula for the Grade 91 type steel base metals should be reviewed. On the other hand, the estimation results suggest that the welded joints of Grade 91 type steel generally exhibit a longer life than the 99% confidence lower limit of the evaluation curve of the material, indicating that there is no need to review the life evaluation formula for the Grade 91 type steel welded joints.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 718-732, October 3–5, 2007,
... Abstract High temperature components with notches, defects and flaws may be subject to crack initiation and crack propagation under long-term service conditions. To study these problems and to support an advanced remnant life evaluation, fracture mechanics procedures are required. Since a more...
Abstract
View Papertitled, Long-Term Crack Behavior under Creep and Creep-Fatigue Conditions of Heat Resistant Steels
View
PDF
for content titled, Long-Term Crack Behavior under Creep and Creep-Fatigue Conditions of Heat Resistant Steels
High temperature components with notches, defects and flaws may be subject to crack initiation and crack propagation under long-term service conditions. To study these problems and to support an advanced remnant life evaluation, fracture mechanics procedures are required. Since a more flexible service mode of power plants causes more start up and shut down events as well as variable loading conditions, creep-fatigue crack behavior becomes more and more decisive for life assessment and integrity of such components. For steam power plant forged and cast components, the crack initiation time and crack growth rate of heat resistant steels were determined in long-term regime up to 600 °C. Component-like double edge notched tension specimens have been examined. The results are compared to those obtained using the standard compact tension specimen. Crack initiation time and crack growth rate have been correlated using the fracture mechanics parameter C*. The applicability of the stress intensity factor K I to describe the creep crack behavior is also being assessed. A modified Two-Criteria-Diagram was applied and adapted in order to recalculate crack initiation times under creep-fatigue conditions. Recommendations are given to support the use of different fracture mechanics parameters in order to describe the long-term crack behavior under creep and/or creep-fatigue conditions.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 702-713, October 22–25, 2013,
... evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy. creep cracking creep deformation creep test hardness heat-affected zone life prediction model martensitic stainless steel scanning electron microscopes voids density welded pipes Advances in Materials...
Abstract
View Papertitled, Fracture of Gr. 91 Steel Longitudinal Welded Pipe under Internal Pressure Creep Condition
View
PDF
for content titled, Fracture of Gr. 91 Steel Longitudinal Welded Pipe under Internal Pressure Creep Condition
An internal pressure creep test has been carried out on a Gr. 91 steel longitudinal welded pipe at 650°C to examine the type IV failure behavior of actual pipes, using a large-scale experiment facility “BIPress”, which can load internal pressure and bending force on large diameter pipes at high temperatures. The creep test was also interrupted three times to measure hardness and voids density in the HAZ region of the outer surface of the test pipe. Results of the measurement of the hardness and voids density at the interruption did not indicate creep damage accumulation. The welded pipe suddenly ruptured with large deformation, which caused crushing damage to the surrounding facility. Type IV cracking occurred in the longitudinal welded portion of the test pipe, and the length of the crack reached 5000mm. SEM observation was carried out at the cross section of the welded portion of the test pipe and voids density was measured along the thickness direction in the HAZ region. To clarify the stress/strain distribution in the welded portion, creep analysis was conducted on the test pipe, where the materials are assumed to consist of base metal, weld metal and HAZ. After stress redistribution due to creep deformation, stress and strain concentrations were observed inside the HAZ region. Then, the authors' creep life prediction model was applied to the creep test result to examine its validity to actual size pipes. It was demonstrated that the life prediction model can evaluate damage of the Gr. 91 steel longitudinal welded pipe with sound accuracy.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1322-1329, October 21–24, 2019,
... for the target structure is known in the remaining life evaluation stage, it is considered possible to consider the heat-to-heat variations in principle. However, at present, there is almost no work on the remaining life evaluation technology taking into account the heat-to-heat variations in the range that does...
Abstract
View Papertitled, Assessment of Effect of Taking Miniature Sample Scoop on Creep <span class="search-highlight">Life</span> of Grade 91 Steel Pipe
View
PDF
for content titled, Assessment of Effect of Taking Miniature Sample Scoop on Creep <span class="search-highlight">Life</span> of Grade 91 Steel Pipe
The effect of taking miniature sample scoops on the creep life of ASME Grade 91 steel pipes was experimentally and analytically assessed in this work. Internal pressure tests were conducted on tubular specimens having defects on their outer surface, which simulate sampling scoops. The creep life did not decrease until the depth ratio of the defect to the wall thickness of the specimens was about 5%, and the creep life decreased with increasing defect depth when the depth ratio exceeded about 5%. When the depth ratio was about 11%, the creep life decreased to four-fifths of that of a specimen with no defects. In addition, as a result of investigating the stress concentration around a defect with a depth ratio of about 5% by the finite element method, stress concentration was clearly observed around the defect. These results suggest that taking a miniature sample up to a depth of 5% of the thickness of a Grade 91 steel pipe in service has a negligible effect on the creep life of the pipe.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1216-1227, February 25–28, 2025,
... to as the Assessment Committee ) in Japan adopted a classification based on the Ni content for the creep life evaluation formula for tube-type Grade 91 steel [14], which was, however, withdrawn in 2015 [15]. It was reported for one of the CSEF steels that the creep strength tends to increase with increasing Cr content...
Abstract
View Papertitled, Effects of Chemical Composition and Heat Treatment on Creep Properties of ASME Grade 91 Type Steel
View
PDF
for content titled, Effects of Chemical Composition and Heat Treatment on Creep Properties of ASME Grade 91 Type Steel
The effects of chemical composition and heat treatment on the creep properties of ASME Grade 91 type steel were experimentally investigated using materials whose chemical compositions and heat treatment conditions in the steel making process were completely controlled. Regarding chemical composition, only the Al, Cr, and Ni contents were systematically varied while keeping the contents of the other elements and heat treatment conditions constant. Regarding heat treatment, the normalizing and tempering temperatures were varied while keeping the contents of chemical components constant. The creep tests of materials were performed for approximately up to 50,000 h at 650°C. The creep strength of Grade 91 type steel decreased with increasing Al content under the test conditions of short-term to long-term range. On the other hand, the effect of Cr content on the creep life of Grade 91 type steel depended on the stress or time range, and the creep strength of the steel decreased at high Cr contents under test conditions of only the longterm range. No effect of Ni content on the creep life of the materials was observed in the test data obtained in this study. As creep tests are currently being conducted at 625°C and 60 MPa, which are conditions closer to the actual service conditions of main steam piping at ultra-super critical power plants, the creep deformation data at present indicate that the above trends hold true in the long-term range. Regarding the effect of heat treatment, the creep life of the materials tended to increase with increasing normalizing temperature or decreasing tempering temperature. The results obtained in this work indicate that within the scope of the material standards for Grade 91 type steel, the effect of chemical composition on creep life is greater than that of heat treatment.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1294-1304, October 21–24, 2019,
... and small punch creep tests were conducted using small samples cut from the base metals in service, and evaluations were done on the basis of material data base obtained using standard test samples of long-term service exposed pipes. It is expected that the precision of the life assessment of pipes...
Abstract
View Papertitled, Creep <span class="search-highlight">Life</span> Assessment Method for Welded Joint of Grade 91 Steel Using Small Sample
View
PDF
for content titled, Creep <span class="search-highlight">Life</span> Assessment Method for Welded Joint of Grade 91 Steel Using Small Sample
A new method of creep life assessment was developed to consider heat-to-heat variations of welded joints of materials used in power plants. This paper explains a scheme of the assessment method and also describes an actual implementation of the method for Grade 91 steel. In the method, creep properties of the welded joints are related to those of each base metal because the heat-to-heat variations of welded joints strongly depend on the creep properties of the corresponding base metals. To estimate the creep properties of each base metal of the target pipe, microstructure analyses and small punch creep tests were conducted using small samples cut from the base metals in service, and evaluations were done on the basis of material data base obtained using standard test samples of long-term service exposed pipes. It is expected that the precision of the life assessment of pipes will be significantly improved using the developed method because it can consider the heat-to-heat variations of their materials, which are not considered in existing life assessment methods.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, February 25–28, 2025,
... is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress...
Abstract
View Papertitled, Metal Temperature Estimation in High-Strength Austenitic Stainless Steels through Precipitation Analysis
View
PDF
for content titled, Metal Temperature Estimation in High-Strength Austenitic Stainless Steels through Precipitation Analysis
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1330-1339, October 21–24, 2019,
... Abstract Type IV creep damage is a problem in high-temperature steam piping made of high chromium steel at thermal power plants, and a method for evaluating the remaining life is required. In this study, we considered that void’s initiation and growth can be expressed by initiation rate f...
Abstract
View Papertitled, Study on Quantitative Relation between Stress and Stress Multiaxiality and Initiation Rate, Growth Rate, and Initiation Start Time of Voids in Type IV Creep Damage of Modified 9Cr-1Mo Steel
View
PDF
for content titled, Study on Quantitative Relation between Stress and Stress Multiaxiality and Initiation Rate, Growth Rate, and Initiation Start Time of Voids in Type IV Creep Damage of Modified 9Cr-1Mo Steel
Type IV creep damage is a problem in high-temperature steam piping made of high chromium steel at thermal power plants, and a method for evaluating the remaining life is required. In this study, we considered that void’s initiation and growth can be expressed by initiation rate f, growth rate h, and initiation start time t 1 , and that stress and TF affect f, h and t 1 . We also proposed the method to estimate f, h and t 1 by measuring the change of the distribution of radius of voids during creep test. The creep test conditions are (1) test temperature of 650 C, maximum principal stress σ 1 of 79.5MPa, and TF of 2.5 ~ 3.0, and (2) test temperature of 650C, maximum principal stress of 71.5MPa, and TF of 2.5 ~ 3.0. The influence of σ 1 to f, h and t 1 was quantified by comparing the result of test (1) and that of test (2).
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
... were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE...
Abstract
View Papertitled, The Development of Nondestructive <span class="search-highlight">Evaluation</span> Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
View
PDF
for content titled, The Development of Nondestructive <span class="search-highlight">Evaluation</span> Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 762-782, October 3–5, 2007,
... been done for determining allowable stress values of these materials (1) and developing the procedures for evaluating life consumption under the superposition of creep and fatigue damages (2-4). It is now well-recognized from service experiences and laboratory testing that welded joints of these steels...
Abstract
View Papertitled, Failure Behavior of High Chromium Steel Welded Joints Under Creep and Creep-Fatigue Conditions
View
PDF
for content titled, Failure Behavior of High Chromium Steel Welded Joints Under Creep and Creep-Fatigue Conditions
The strength of welded joints in high-chromium steels is a critical concern for operators of ultra-supercritical thermal power plants. To investigate this, a series of creep-fatigue tests with tensile strain holds were conducted on welded joints of two widely used high-chromium steels: Grade 91 and Grade 122. The tests revealed that failure consistently occurred in the fine-grain heat-affected zone, even at relatively low temperatures and short durations, whereas in simple creep tests, failure occurred in the plain base metal region. Four different procedures were used to predict failure life, and their results were compared with experimental data. Among them, a newly proposed energy-based approach provided the most accurate failure life estimations, independent of material type and temperature.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature...
Abstract
View Papertitled, Rejuvenation and <span class="search-highlight">Life</span> Assessment of IN 738 Blades after Long-Term Service
View
PDF
for content titled, Rejuvenation and <span class="search-highlight">Life</span> Assessment of IN 738 Blades after Long-Term Service
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 271-282, October 11–14, 2016,
... materials of A-USC boiler tube and pipe for long-term creep strength evaluation and field exposure test. In the present study, to establish the creep damage and life assessment method for Ni based alloy component, long-term creep rupture properties, microstructural stability, and creep damage morphology...
Abstract
View Papertitled, Investigation of Long Term Creep Damage Behavior and <span class="search-highlight">Life</span> Assessment of Ni Based Weldment
View
PDF
for content titled, Investigation of Long Term Creep Damage Behavior and <span class="search-highlight">Life</span> Assessment of Ni Based Weldment
Continuous and extensive works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants worldwide. Since Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti, ASME Code Case 2684) was selected as one of the promising candidate materials of A-USC boiler tube and pipe for long-term creep strength evaluation and field exposure test. In the present study, to establish the creep damage and life assessment method for Ni based alloy component, long-term creep rupture properties, microstructural stability, and creep damage morphology of HR6W weldment were experimentally investigated. Creep tests of HR6W weldment were conducted at temperature range of 700 to 800°C for durations up to 70,000 hours. Failure behavior of creep void formation and creep crack growth was identified, and damage mechanism of weldment during creep were discussed and characterized. Furthermore, uniaxial interrupted creep tests were carried out, the creep damage evaluation was conducted and life assessment approach was proposed based on the metallographic quantification evaluation of creep void and microstructure evolution. It demonstrated the possibility and validity to evaluate creep damage of Ni based alloy component with creep void and microstructure parameters.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 960-968, February 25–28, 2025,
... Abstract This study evaluates various nondestructive testing methods for detecting creep damage and assessing residual life in Grade 91 steel welds. Three primary detection techniques were investigated: phased array ultrasonic testing (PAUT), eddy current testing with high-temperature...
Abstract
View Papertitled, Nondestructive Detection of Creep Damage in ASME Grade 91 Steel Welds
View
PDF
for content titled, Nondestructive Detection of Creep Damage in ASME Grade 91 Steel Welds
This study evaluates various nondestructive testing methods for detecting creep damage and assessing residual life in Grade 91 steel welds. Three primary detection techniques were investigated: phased array ultrasonic testing (PAUT), eddy current testing with high-temperature superconductor direct current and superconducting quantum interference device (ECT•HTS-dc-SQUID), and replica observation. PAUT detected creep damage between 60-80% of creep life, while ECT•HTS-dc-SQUID showed detection capability between 80-90% of creep life. Replica observation revealed creep voids only in the final stages before rupture. Additionally, three strain measurement methods were evaluated: capacitive strain sensors (providing continuous monitoring during creep exposure), laser displacement meters (used during test interruptions), and SPICA strain measurement. Both capacitive sensors and laser meters produced results comparable to conventional extensometer measurements. The SPICA method proved particularly effective in measuring heat-affected zone (HAZ) strain after creep exposure, revealing higher strain values in the HAZ compared to base and weld metal, with a consistent increase during creep exposure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1305-1313, October 21–24, 2019,
... knowledge and experiences of assessing creep life of high Cr creep enhanced ferritic steels rotor materials by means of non-destructive methods, such as hardness and microstructure evaluation [7,8]. In case of Ni-based superalloys, the method of microstructure evaluation focused on Ni3(Al,Ti) phase were...
Abstract
View Papertitled, Creep <span class="search-highlight">Life</span> Assessment of γ′ Precipitation Strengthened Ni-Based Superalloys for High Efficiency Turbine Components
View
PDF
for content titled, Creep <span class="search-highlight">Life</span> Assessment of γ′ Precipitation Strengthened Ni-Based Superalloys for High Efficiency Turbine Components
700°C advanced ultra-supercritical system and supercritical CO 2 turbine system are developed for high efficiency turbine systems for next generation. This study covered the feasibility of creep life assessment of γ’-Ni 3 (Al,Ti) precipitation strengthened Ni-based superalloy rotor material, TOS1X-2, a modified alloy of UNS N06617 for these systems, based on hardness measurement method. It was found that the hardness of TOS1X-2 was governed by the change in precipitation strengthening and strain hardening during creep. The clear relationship between hardness increase in crept portion and macroscopic creep strain was observed, suggesting that it might be possible to estimate the creep strain or initiation of acceleration from hardness measurement. Microstructure inhomogeneity and microstructure evolutions during creep especially focused on dispersion of creep strain were characterized by EBSD quantitative analysis. It was found that creep strain was accumulated along the grain boundary, while it was relatively absent in coarse grains with low Schmid factor of {111} <110> slip system in fcc structure. The upper limit of hardness scatter band is thought to be important, since it represents the local and critical creep damage of the alloy.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, February 25–28, 2025,
.... 18, No. 8 (2013), pp. 631-651. [4] Shigeyama, Haruhisa, Yukio Takahashi, John Siefert, and Jonathan Parker. "Creep-Fatigue Life Evaluation for Grade 91 Steels with Various Origins and Service Histories." Metals Vol. 14, No. 2 (2024) pp. 148. [5] Andrews, B., and G. P. Potirniche. "Explicit...
Abstract
View Papertitled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
View
PDF
for content titled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet Header
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 584-602, August 31–September 3, 2010,
... life predictability under such conditions indispensable in order to establish a sound technical basis for creep-fatigue evaluation of plant equipment. The issue becomes even more important since creep-fatigue damage and consequent lifetime can be influenced by rupture ductility that could...
Abstract
View Papertitled, Creep and Creep-Fatigue Behavior of Grade 92 Base Metal and Welded Joints
View
PDF
for content titled, Creep and Creep-Fatigue Behavior of Grade 92 Base Metal and Welded Joints
Grade 92 steel, a creep strength-enhanced ferritic (CSEF) steel, is used in supercritical steam fossil power plants for boilers and piping systems. While its creep strength is crucial, understanding the interaction between creep and fatigue damage is also vital for assessing component integrity under cyclic loading. Despite existing studies on its creep-fatigue behavior, additional data under creep-dominant conditions relevant to plant evaluations are needed. Girth welds, critical to piping system integrity, are particularly important in this context. EPRI and CRIEPI initiated a project to develop a comprehensive database on the creep-fatigue behavior of Grade 92 steel's base metal and welded joints and to establish a suitable life estimation procedure. Key findings include: (i) a thick pipe with submerged arc welding (SAW) was manufactured for testing; (ii) base metal and cross-weld specimens showed similar behavior under short-term creep and cyclic loading; (iii) these specimens had lower creep strengths than average literature values for this steel class in the short time regime, with differences decreasing as stress decreased; and (iv) the fatigue and creep-fatigue behavior of these specimens were similar to those of Grade 91 and 122 steels, with common characteristics in creep-fatigue failure prediction models across the three CSEF steels.
1