Skip Nav Destination
Close Modal
Search Results for
iron-aluminum-chromium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-13 of 13 Search Results for
iron-aluminum-chromium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 337-356, October 25–28, 2004,
... gaseous corrosion testing gas-tungsten arc welding iron-aluminum-chromium alloys microsegregation nickel-based superalloys oxidizing sulfidizing waterwall boiler tubes weld overlay claddings weldability httpsdoi.org/10.31399/asm.cp.am-epri-2004p0337 Copyright © 2005 ASM International® 337 338...
Abstract
View Paper
PDF
Coal burning power companies are currently considering FeAlCr weld overlay claddings for corrosion protection of waterwall boiler tubes located in their furnaces. Previous studies have shown that these FeAlCr coatings exhibit excellent high-temperature corrosion resistance in several types of low NOx environments. In the present study, the susceptibility of FeAlCr weld overlay claddings to hydrogen cracking was evaluated using a gas-tungsten arc welding (GTAW) process. Microsegregation of alloying elements was determined for the FeAlCr welds and compared to a currently used Ni-based superalloy. Long-term gaseous corrosion testing of select weld overlays was conducted along with the Ni-based superalloy in a gaseous oxidizing/sulfidizing corrosion environment at 500°C. The sample weight gains were used along with analysis of the corrosion scale morphologies to determine the corrosion resistance of the coatings. It was found that although there were slight differences in the corrosion behavior of the selected FeAlCr weld coatings, all FeAlCr based alloys exhibited superior corrosion resistance to the Ni-based superalloy during exposures up to 2000 hours.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 765-776, October 22–25, 2013,
... of an alloy and its oxidation behavior. Alloy 214 (a nickel-based alloy containing only 16.3% chromium) exhibited the lowest oxidation rate in Fig. 1. This alloy contains 4.4% aluminum (Al) and formed a very protective aluminum oxide instead of a chromium oxide when tested at 750°C (1382°F). 766 OXIDE...
Abstract
View Paper
PDF
As part of the Boiler Materials for Ultrasupercritical Coal Power Plants program, sponsored by the United States (U.S.) Department of Energy (DOE) and the Ohio Coal Development Office (OCDO), the steamside oxidation and oxide exfoliation behavior of candidate alloys have been thoroughly evaluated in steam at temperatures between 620°C and 800°C (1148°F and 1472°F) for times up to 10,000 hours. The results from this test program indicate that the oxidation rates and oxide morphologies associated with steamside oxidation are a strong function of the crystallographic lattice structure and the chromium content of the material. Oxide exfoliation correlates to oxide thickness. The time required to reach the critical oxide thickness for exfoliation can be estimated based on oxidation kinetic relationships. For austenitic stainless steels, shot peening is effective in reducing steamside oxidation/exfoliation, but the efficacy of this technique is limited by the operating temperature. Nickel-based alloys exhibit very low oxidation/exfoliation rates, but have a propensity to form aluminum/titanium oxides along near surface grain boundaries.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 888-899, October 11–14, 2016,
... carburisation. Results are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales. carbide precipitation carbon permeation carburization reactions chromium diffusion corrosion iron-rich oxide scale nickel-base alloys stainless steel supercritical CO 2...
Abstract
View Paper
PDF
Nickel-base alloys were exposed to flowing supercritical CO 2 (P = 20MPa) at temperatures of 700 to 1000°C for up to 1000 h. For comparison, 316L stainless steel was similarly exposed at 650°C. To simulate likely service conditions, tubular samples of each alloy were internally pressurised by flowing CO 2 , inducing hoop stresses up to 35 MPa in the tube walls. Materials tested were Haynes alloys 188, 230 and 282, plus HR120 and HR160. These alloys developed chromia scales and, to different extents, an internal oxidation zone. In addition, chromium-rich carbides precipitated within the alloys. Air aging experiments enabled a distinction between carburisation reactions and carbide precipitation as a result of alloy equilibration. The stainless steel was much less resistant to CO 2 attack, rapidly entering breakaway corrosion, developing an external iron-rich oxide scale and internal carburisation. Results are discussed with reference to alloy chromium diffusion and carbon permeation of oxide scales.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1036-1047, October 21–24, 2019,
... will be compared for INCONEL filler metals 72, 72M, 625 and 622. boilers cladding corrosion resistance erosion resistance fossil-fueled boiler tubing Inconel filler metals nickel-chromium alloys superheaters water wall tubes Joint EPRI 123HiMAT International Conference on Advances in High...
Abstract
View Paper
PDF
The INCONEL filler metals 72 and 72M have been utilized significantly for weld overlay protection of superheaters and reheaters, offering enhanced corrosion and erosion resistance in this service. Laboratory data conducted under simulated low-NOx combustion conditions, field exposure experience, and laboratory analysis (microstructure, chemical composition, overlay thickness measurements, micro-hardness) of field-exposed samples indicate that these overlay materials are also attractive options as protective overlays for water wall tubes in low-NOx boilers. Data and field observations will be compared for INCONEL filler metals 72, 72M, 625 and 622.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... scale. However, iron enrichment is locally identified in the outer part of the scale as presented in Figure 4. Beneath the external oxide scale an area characterized by the presence of porosity was observed. EDX analyses show that the inner surfaces of these pores are covered by a very thin aluminum...
Abstract
View Paper
PDF
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1138-1148, October 11–14, 2016,
... WROUGHT alloy. The highest mass gain of Haynes 282-CAST was associated with the formation of Cr2O3 and NiO corrosion products. In the HAYNES® 282® WROUGHT, chromium cobalt iron nickel matrix and aluminium chromium nickel matrix with tiny amount of Cr2O3 oxide has been found showing high resistance...
Abstract
View Paper
PDF
Prior to utilizing new advanced materials in coal power plants, a large number of experimental testing is required. Test procedures are needed in specialized high temperature laboratories with state of the art facilities and precise, accurate analytical equipment capable of performing tests at a variety of temperatures and environments. In this study, the results of a unique technique involving salt spray testing at high temperatures are presented. The Haynes 282 gamma – prime (γ’) strengthened alloy fabricated by means of three different manufacturing processes: HAYNES 282 WROUGHT alloy, Haynes 282-SINT alloy, and finally Haynes 282-CAST alloy have been tested. The materials have been exposed to a salt spray corrosion atmosphere using 1% NaCl - 1% Na 2 SO 4 . Post exposure investigations have included SEM, EDS and XRD examinations. The test using salt spray of 1% NaCl - 1% Na 2 SO 4 water solution at 550 °C for 500 hours indicted no influence on the corrosion products formation, where Cr 2 O 3 has been developed in all three alloys, whereas NiO has been found only in Haynes 282-CAST material. On the other hand, it has been found that the fabrication process of HAYNES 282 alloy strongly influences the corrosion products formation under the high temperature exposures.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 863-880, October 22–25, 2013,
... 48.12 36.04 42.65 40.35 Aluminum Oxide, % as Al2O3 19.65 16.84 29.07 22.56 Iron Oxide, % as Fe2O3 17.64 5.86 20.45 28.33 Calcium Oxide, % as CaO 4.28 21.61 1.76 2.62 Magnesium Oxide, % as MgO 0.95 5.06 0.52 0.69 Sodium Oxide, % as Na2O 1.08 1.69 0.34 0.41 Potassium Oxide, % as K2O 2.59 0.50 1.61 1.28...
Abstract
View Paper
PDF
A combined pilot-scale combustion test and long-term laboratory study investigated the impact of oxy-firing on corrosion in coal-fired boilers. Four coals were burned under both air and oxy-firing conditions with identical heat input, with oxy-firing using flue gas recirculation unlike air-firing. Despite higher SO 2 and HCl concentrations in oxy-firing, laboratory tests showed no increase in corrosion rates compared to air-firing. This is attributed to several factors: (1) Reduced diffusion: High CO 2 in oxy-firing densified the gas phase, leading to slower diffusion of corrosive species within the deposit. (2) Lower initial sulfate: Oxy-fired deposits initially contained less sulfate, a key hot corrosion culprit, due to the presence of carbonate. (3) Reduced basicity: CO 2 and HCl reduced the basicity of sulfate melts, leading to decreased dissolution of metal oxides and mitigating hot corrosion. (4) Limited carbonate/chloride formation: The formation of less corrosive carbonate and chloride solutes was restricted by low O 2 and SO 3 near the metal surface. These findings suggest that oxy-firing may not pose a greater corrosion risk than air-firing for boiler materials.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 753-764, October 22–25, 2013,
... thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed. aluminium aluminized coating diffusion ferritic-martensitic...
Abstract
View Paper
PDF
Laboratory-scale tests are frequently used to generate understanding of high-temperature oxidation phenomena, to characterise and rank the performance of existing, future materials and coatings. Tests within the laboratory have the advantage of being well controlled, monitored and offer the opportunity of simplification which enables the study of individual parameters through isolating them from other factors, such as temperature transients. The influence of pressure on the oxidation of power plant materials has always been considered to be less significant than the effects of temperature and Cr content, but still remains a subject of differing opinions. Experimental efforts, reported in the literature, to measure the influence of steam pressure on the rate of oxidation have not produced very consistent or conclusive results. To examine this further a series of high pressure steam oxidation exposures have been conducted in a high pressure flowing steam loop, exposing a range of materials to flowing steam at 650 and 700 °C and pressure of 25, 50 and 60 bar. Data is presented for ferritic-martensitic alloys showing the effect of increasing pressure on the mass change and oxide thickness of these alloys in the flowing steam loop. In addition the effect observed on the diffusion of aluminium from an aluminised coating in these alloys is also presented and the differences in the extent of diffusion discussed.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
... to the nickelbase alloys such as 625, 622, 52, 72, 72M and the cheaper iron-based alloy 33. Recent results have shown alloy 52 to have been effective with no cracking after 7.5 years in a large supercritical application in the AEP system, but 52 did not perform well in the more stringent acid tests at PP&L s...
Abstract
View Paper
PDF
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1149-1159, October 11–14, 2016,
... strengthening effects throughout creep. Equilibrium calculation predicted that the smaller phase fraction of M 23 C 6 and VN precipitates due to the lower content of chromium and lower ratio of nitrogen/aluminum in the weaker heat. However, given that long-term creep rupture strength at 650°C converged...
Abstract
View Paper
PDF
Large heat-to-heat variation of creep rupture strength in weldments of mod.9Cr-1Mo steels was observed in the creep rupture tests conducted for two different heats at 600°C and 650°C. One heat showed consistently lower time-to-rupture than the other for 130-60MPa at 600°C. Detailed microstructural investigations revealed that the number density of precipitates in the weaker heat was remarkably lower than that associated with the stronger heat through most of the creep region. Accordingly, heat-to-heat variation of creep rupture strength was attributed to the difference in the precipitate strengthening effects throughout creep. Equilibrium calculation predicted that the smaller phase fraction of M 23 C 6 and VN precipitates due to the lower content of chromium and lower ratio of nitrogen/aluminum in the weaker heat. However, given that long-term creep rupture strength at 650°C converged for the two heats, the microstructure including precipitates may settle into a similar level for subsequent longer hours even at 600°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 735-746, October 11–14, 2016,
..., distribution and morphology, quantified using advanced electron microscopy techniques. advanced electron microscopy cast nickel-chromium alloys grain structure heat treatment high temperature exposures microstructure precipitate size selective laser melting Advances in Materials Technology...
Abstract
View Paper
PDF
Additive manufacturing (AM) is a process where, as the name suggests, material is added during production, in contrast to techniques such as machining, where material is removed. With metals, AM processes involve localised melting of a powder or wire in specific locations to produce a part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. These components are often produced from nickel-based superalloys, a group of materials which possess excellent mechanical properties at high temperatures. However, although the microstructural and mechanical property evolution during the high temperature exposure of conventionally produced superalloy materials is reasonably well understood, the effects of prolonged high temperature exposure on AM material are less well known. This research is concerned with the microstructures of components produced using AM techniques and an examination of the effect of subsequent high temperature exposures. In particular, the paper will focus on the differences between cast and SLM IN939 as a function of heat treatment and subsequent ageing, including differences in grain structure and precipitate size, distribution and morphology, quantified using advanced electron microscopy techniques.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 318-325, October 11–14, 2016,
... addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics. corrosion resistance creep-rupture properties fossil energy structural applications iron-chromium-aluminum alloys Laves phase oxidation resistance tensile properties...
Abstract
View Paper
PDF
New Fe-base ferritic alloys based on Fe-30Cr-3Al-Nb-Si (wt.%) were proposed with alloy design concepts and strategies targeted at improved performance of tensile and creep-rupture properties, environmental compatibilities, and weldability, compared to Grade 91/92 type ferritic-martensitic steels. The alloys were designed to incorporate corrosion and oxidation resistance from high Cr and Al additions and precipitate strengthening via second-phase intermetallic precipitates (Fe2Nb Laves phase), with guidance from computational thermodynamics. The effects of alloying additions, such as Nb, Zr, Mo, W, and Ti, on the properties were investigated. The alloys with more than 1 wt.% Nb addition showed improved tensile properties compared to Gr 91/92 steels in a temperature range from 600-800°C, and excellent steam oxidation at 800°C as well. Creep-rupture properties of the 2Nb-containing alloys at 700°C were comparable to Gr 92 steel. The alloy with a combined addition of Al and Nb exhibited improved ash-corrosion resistance at 700°C. Additions of W and Mo were found to refine the Laves phase particles, although they also promoted the coarsening of the particle size during aging. The Ti addition was found to reduce the precipitate denuded zone along the grain boundary and the precipitate coarsening kinetics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 80-89, October 21–24, 2019,
... strength is obtained. INTRODUCTION High chromium heat resistant steels have excellent high-temperature strength and corrosion resistance compared to those of conventional low-alloy steels, so that they are widely utilized for ultra-supercritical (USC) boiler components such as main piping, headers and heat...
Abstract
View Paper
PDF
Long-term creep rupture tests up to 10 5 hours at 600℃ and 650℃ were carried out on mod.9Cr- 1Mo steel base metal and weldments from five different materials, consisting of various chemical compositions and heat treatments as well as welding conditions. As a result, positive correlations of creep rupture strength were clarified between the base metal and weldments from the same materials. Microstructural observations and thermokinetic calculations revealed that the strength correlations were attributed to the precipitation strengthening behavior of finely dispersed M 23 C 6 carbides and V-type MX carbonitrides, where their precipitation distribution characteristic in the fine-grained HAZ microstructures partially or almost entirely took over those in base metal. This finding implies that the long-term creep rupture strength of mod.9Cr-1Mo steel weldment might be able to be evaluated as long as the corresponding base metal strength is obtained.