Skip Nav Destination
Close Modal
Search Results for
inspection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 186
Search Results for inspection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 983-988, October 11–14, 2016,
... Abstract The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic...
Abstract
View Papertitled, <span class="search-highlight">Inspection</span> and Evaluation of Defects on the Welds of P92 Header
View
PDF
for content titled, <span class="search-highlight">Inspection</span> and Evaluation of Defects on the Welds of P92 Header
The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic and component sampling. By analyzing the results of on-site test and samples removed from the component, it is found that cracks existing in the welds are hydrogen induced delayed cracks. During the welding process and post-heating treatment (hydrogen bake-out), dehydrogenation was insufficient. This fact, combined with welding residual stresses resulted in the observed hydrogen induced cracking.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 304-315, February 25–28, 2025,
... Abstract This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure...
Abstract
View Papertitled, Coal-fired Power Plant Boiler Tube Corrosion <span class="search-highlight">Inspection</span> Equipment and Remaining Lifetime Evaluation Program
View
PDF
for content titled, Coal-fired Power Plant Boiler Tube Corrosion <span class="search-highlight">Inspection</span> Equipment and Remaining Lifetime Evaluation Program
This paper discusses the design of a prototype for accurately inspecting the degree of wall thinning in boiler tubes, which plays a critical role in power plants. The environment in power plants is characterized by extreme conditions such as high temperatures, high pressure, and ultrafine dust (carbides), making the maintenance and inspection of boiler tubes highly complex. As boiler tubes are key components that deliver high-temperature steam, their condition critically affects the efficiency and safety of the power plant. Therefore, it is essential to accurately measure and manage the wall thinning of boiler tubes.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 397-408, February 25–28, 2025,
... Abstract Nuclear reactor inspections occasionally identify degraded materials in irradiated reactor components. Although mechanical repair options are possible, these repair solutions may be cost prohibitive or impractical to implement due to access restraints and/or the severity...
Abstract
View Papertitled, Evaluation of Highly Irradiated Stainless Steel and Nickel-based Materials using Phased Array Ultrasonic <span class="search-highlight">Inspections</span>
View
PDF
for content titled, Evaluation of Highly Irradiated Stainless Steel and Nickel-based Materials using Phased Array Ultrasonic <span class="search-highlight">Inspections</span>
Nuclear reactor inspections occasionally identify degraded materials in irradiated reactor components. Although mechanical repair options are possible, these repair solutions may be cost prohibitive or impractical to implement due to access restraints and/or the severity of the degradation. Welding repair of reactor components may input excessive heat into these irradiated materials resulting in diffusion of trace amounts of helium within the grain boundaries of the weld heat-affected zone (HAZ). Intergranular HAZ cracking can then result from the combination of this helium diffusion and high localized tensile stresses generated during weld cooling. It is therefore critical to characterize these zones and understand limitations for welding highly irradiated components to prevent helium-induced cracking. To accomplish this, typical reactor structural materials including Types 304L and 316L stainless steels and nickel-based Alloy 600/182 materials irradiated within the High Flux Isotope Reactor facility at Oak Ridge National Laboratory were used in this study for welding and evaluation. A phased array ultrasonic inspection system has been developed to characterize cracking in the weld samples. It provides remote controlled scanning and minimizes handling the samples, minimizing operator dose. The samples are inspected from the side opposite of the welds. The material and weld grain noise were evaluated at 10 MHz and found to be conducive to detecting cracking in the material and welds. Inspection of the samples comprises a 10 MHz phased array probe sweeping a focused longitudinal wave from -60° to 60° while the probe is raster scanned over the sample in small increments. The collected data is analyzed using UltraVision 3. Several of the irradiated samples were inspected prior to welding. Some of the samples had what appear to be small lamination defects in them. One irradiated welded sample has been tested to date with no cracking detected, which has been confirmed by destructive examination.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 347-355, October 11–14, 2016,
..., Linfeng Qian, Xinzhong Chen China Special Equipment Inspection and Research Institute, Beijing, China ABSTRACT Up to now, the amount of supercritical boilers in China has ranked number one in the world. Many supercritical boilers have run for more than 100,000 hours. Creep becomes one of the main reasons...
Abstract
View Papertitled, Creep Failure Analysis of Superheater Tubes in a Supercritical Boiler
View
PDF
for content titled, Creep Failure Analysis of Superheater Tubes in a Supercritical Boiler
Up to now, the amount of supercritical boilers in China has ranked number one in the world. Many supercritical boilers have run for more than 100,000 hours. Creep becomes one of the main reasons for supercritical boiler tubes failure. In this article, the failure of superheater tubes in a supercritical boiler was analyzed, the microstructural evolution of austenitic stainless steel tubes were studied, a full investigation into the failure cause was carried out involving in visual examination, optical microscope, SEM, TEM and XRD. The results show, sigma phase precipitates in this austenitic steel with the extension of service time, sigma precipitates form at grain boundaries by continuous chain. Sigma precipitates are hard and brittle, weaken grain boundaries and cause microscopic damage, eventually lead to boiler tubes failure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1182-1189, October 22–25, 2013,
... Abstract Addressing the growing concern of supercritical and ultra-supercritical boilers as potential safety hazards in power plants, a new Boiler Risk Management and Life Prediction System (BRMLPS) has been developed. This system leverages risk-based inspection and assessment techniques...
Abstract
View Papertitled, Development of Boiler Risk Management and Life Prediction System
View
PDF
for content titled, Development of Boiler Risk Management and Life Prediction System
Addressing the growing concern of supercritical and ultra-supercritical boilers as potential safety hazards in power plants, a new Boiler Risk Management and Life Prediction System (BRMLPS) has been developed. This system leverages risk-based inspection and assessment techniques alongside life prediction and management methods. The BRMLPS focuses on evaluating and ranking the risk associated with critical boiler components, such as heating surfaces, headers, and drums. This risk assessment allows for the development of targeted and efficient inspection plans and repair strategies, ultimately aiming to minimize accident rates, reduce potential losses, and optimize safety investments. By implementing this system, power plants can achieve maintenance optimization, balancing safety and economic considerations for their specialized equipment.
Proceedings Papers
A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 260-270, October 3–5, 2007,
... Engineering and Inspection Corporation 14-1 Benten-cho, Tsurumi-ku Yokohama, Japan 230-0044 Abstract In order to reduce carbon dioxide gas emission, the 700 degree-C class thermal power plant, of which plant efficiency improvement is achieved, has been studied in Japan. The plant technology is based upon...
Abstract
View Papertitled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
View
PDF
for content titled, A Study of the Performance Requirements and Construction Rules for 700°C Advanced USC Power Plants
In response to the need to reduce carbon dioxide gas emissions, Japan has been actively researching 700°C-class thermal power plants with a focus on improving overall plant efficiency. This technological advancement is fundamentally grounded in advanced materials development, encompassing the creation of high-strength alloys, fireside corrosion-resistant materials, and steamside oxidation-resistant alloys. A significant challenge emerged as some of the developed materials fell outside the scope of existing domestic technical standards. Moreover, the potential failure modes for advanced ultra-supercritical (A-USC) components operating at 700°C were anticipated to differ substantially from those observed in traditional ultra-supercritical (USC) components at 600°C. Consequently, researchers systematically examined and analyzed the potential failure modes specific to 700°C A-USC components, using these insights to establish comprehensive performance requirements. The research initiative, which commenced in June 2006, was strategically planned to develop a draft technical interpretation by March 2011. This paper provides a detailed overview of the investigative process, encompassing the comprehensive analysis of failure modes, the derivation of performance requirements, and the progression toward developing a new technical interpretation framework for high-temperature power plant components.
Proceedings Papers
Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Free
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
... of Petroleum (East China) Qingdao, Shandong, P.R. China Wen-Chun Jiang China University of Petroleum (East China) Qingdao, Shandong, P.R. China Ming-Lei Wang China University of Petroleum (East China) Qingdao, Shandong, P.R. China Ming-Da Song Shandong special equipment inspection and research institute co...
Abstract
View Papertitled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
View
PDF
for content titled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term Service
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1159-1168, October 21–24, 2019,
... International® All rights reserved. www.asminternational.org MICROSTRUCTURAL EVOLUTION AND HIGH TEMPERATURE FAILURE OF T91/TP347H DISSIMILAR WELDS USED IN CHINA PLANTS Chang Che, Gong Qian, Xishen Yang, Xiang Liu China Special Equipment Inspection and Research Institute, Beijing, China ABSTRACT Dissimilar metal...
Abstract
View Papertitled, Microstructural Evolution and High Temperature Failure of T91/TP347H Dissimilar Welds Used in China Plants
View
PDF
for content titled, Microstructural Evolution and High Temperature Failure of T91/TP347H Dissimilar Welds Used in China Plants
Dissimilar metal welds between T91 ferritic steels and TP347H austenitic alloys are commonly used in fossil power plants in China. Premature failure of such dissimilar welds can occur, resulting in unplanned plant outages that can cause huge economic losses. In this article, microstructural evolution of T91/TP347H dissimilar welds after different service conditions were studied, mechanical properties before and after service were also analyzed, a full investigation into the failure cause was carried out. The results show, the dissimilar metal welds in the as-welded condition consists of a sharp chemical concentration gradient across the fusion line, failure is attributed to the steep microstructural and mechanical properties gradients, formation of interfacial carbides that promote creep cavity formation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1487-1499, October 21–24, 2019,
... successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support...
Abstract
View Papertitled, 700℃ A-USC Technology Development in Japan
View
PDF
for content titled, 700℃ A-USC Technology Development in Japan
CO 2 emission reduction from coal power plants is still a serious issue to mitigate the impact of global warming and resulting climate change, though renewables are growing today. As one of the solutions, we developed A-USC (Advanced Ultra Super Critical steam condition) technology to raise the thermal efficiency of coal power plants by using high steam temperatures of up to 700℃ between 2008 and 2017 with the support of METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). The temperature is 100℃ higher than that of the current USC technology. Materials and manufacturing technology for boilers, turbines and valves were developed. Boiler components, such as super heaters, a thick wall pipe, valves, and a turbine casing were successfully tested in a 700℃-boiler component test facility. Turbine rotors were tested successfully, as well, in a turbine rotating test facility under 700℃ and at actual speed. The tested components were removed from the facilities and inspected. In 2017, following the component tests, we started a new project to develop the maintenance technology of the A-USC power plants with the support of NEDO. A pressurized thick wall pipe is being tested in a 700℃ furnace to check the material degradation of an actual sized component.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation...
Abstract
View Papertitled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
View
PDF
for content titled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 494-505, October 11–14, 2016,
... out on the main steam and hot reheat grade 91 steam pipework. In some cases low hardness readings were found with subsequent metallurgical replication showing the presence of an aberrant non martensitic microstructure. This led to a more extensive inspection programme on the steam lines...
Abstract
View Papertitled, Investigation and Post Service Creep Testing of a Mis-Heat Treated Seam Welded Grade 91 Hot Reheat Bend
View
PDF
for content titled, Investigation and Post Service Creep Testing of a Mis-Heat Treated Seam Welded Grade 91 Hot Reheat Bend
This paper reports the results of a collaborative investigation of an ex-service grade 91 bend carried out by the UK generating companies Centrica, SSE, Engie and RWE. As part of the handover exercise for Centrica’s Langage power station in 2009 a number of routine checks were carried out on the main steam and hot reheat grade 91 steam pipework. In some cases low hardness readings were found with subsequent metallurgical replication showing the presence of an aberrant non martensitic microstructure. This led to a more extensive inspection programme on the steam lines and the discovery of other areas of suspect material. A review of the operating capability of the plant, including detailed pipework stress analysis and a pipework peaking assessment, along with the assumption that lower strength grade 91 material was present, led to the steam lines being down rated and returning to service under these revised conditions. At the first C inspection in December 2012, after the HRSG and associated pipework had operated for 18720 hours, a bend with a soft weld, along with a section of the straight pipe on either side, was removed from service. An investigation was undertaken to establish how long this component would have survived, had it been left in service, and to consider the implications for the future operation of the plant.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability...
Abstract
View Papertitled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
View
PDF
for content titled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 720-732, October 25–28, 2004,
... Abstract High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing...
Abstract
View Papertitled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
View
PDF
for content titled, Revealing Creep Associated and Industrial Flaws in Operating High Energy Piping by Quantitative Acoustic Emission Method
High-pressure and high-temperature piping in fossil power plants suffer from unexpected and rarely predictable failures. To prevent failures and ensure operational safety, a Quantitative Acoustic Emission (QAE) non-destructive inspection (NDI) method was developed for revealing, identifying, and assessing flaws in equipment operating under strong background noise. This method enables overall piping inspection during normal operation, locating suspected zones with developing low J-integral flaws, identifying flaw types and evaluating danger levels based on J-integral values, and detecting defective components prior to shutdown. Combining continuous and burst acoustic emission as an information tool, the QAE NDI revealed, identified, and assessed significant flaws like creep, micro-cracks, pore/inclusion systems, plastic deformation, and micro-cracking in over 50 operating high-energy piping systems. Findings were independently verified by various NDI techniques, including time of flight diffraction, focused array transducers, magnetic particles, ultrasonic testing, X-ray, replication, and metallurgical investigations.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 752-761, August 31–September 3, 2010,
... to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when...
Abstract
View Papertitled, Estimates for the Onset of Type IV Cracking in Grade 91 Power Plant Components
View
PDF
for content titled, Estimates for the Onset of Type IV Cracking in Grade 91 Power Plant Components
Grade 91 steel, while increasingly popular in high-temperature power plants for both retrofit and new construction applications, faces significant challenges with Type IV cracking at the outer parent side edge of the weld heat affected zone. This structural integrity issue has led to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when Type IV life deviates from parent life. By combining test results from various temperatures, the method generates a generalized prediction of Type IV life that can be extrapolated to any temperature of interest, providing a practical lower bound estimate for service life of the weakest grade 91 material. This approach, which can be applied to service operating conditions to establish realistic inspection timelines for plant components, has already successfully identified early-stage Type IV cracking in two retrofit headers and is being expanded to additional grade 91 components.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 590-600, October 3–5, 2007,
... Abstract In 2004, extensive Type IV cracking was discovered in the branch and attachment welds of a modified 9Cr (Grade 91) header after 58,000 hours of service. The header, installed as a retrofit in a 500MW unit in 1992, was inspected early due to concerns over the incorporation of low...
Abstract
View Papertitled, Service Experience with a Retrofit Modified 9Cr (Grade 91) Steel Header
View
PDF
for content titled, Service Experience with a Retrofit Modified 9Cr (Grade 91) Steel Header
In 2004, extensive Type IV cracking was discovered in the branch and attachment welds of a modified 9Cr (Grade 91) header after 58,000 hours of service. The header, installed as a retrofit in a 500MW unit in 1992, was inspected early due to concerns over the incorporation of low nitrogen-to-aluminum (N:Al) ratio components, a factor previously linked to premature failures of this steel grade in the UK. Investigations confirmed the presence of coarse aluminum nitride (AlN) precipitates, a depleted VN-type MX precipitate population, and reduced parent and Type IV creep strength in low N:Al ratio material. Cracking predominantly occurred on the header barrel sides of the welds in material that, despite meeting ASTM compositional requirements, exhibited this unfavorable N:Al ratio. This paper summarizes the inspection history, detailing crack distribution observed in 2004 and a subsequent outage in 2006. The findings are analyzed in the context of Grade 91’s Type IV creep life shortfall and its dependence on chemical composition, with broader implications for other Grade 91 components in service.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 293-302, October 3–5, 2007,
... installed as critical pressure part components in US power plants has been processed in such a way that the elevated temperature performance of the material likely will not meet the expectations of the designers of those components. Recent inspections at a number of new and operating plants, both standard...
Abstract
View Papertitled, Life Management of Creep Strength Enhanced Ferritic Steels—Solutions for the Performance of Grade 91 Steel
View
PDF
for content titled, Life Management of Creep Strength Enhanced Ferritic Steels—Solutions for the Performance of Grade 91 Steel
Recent in-service experiences have revealed critical vulnerabilities in creep-strength enhanced ferritic (CSEF) steels, with cracking potentially occurring surprisingly early in a component's operational life. Fabrication irregularities have been found to introduce substantial property deficiencies compared to average material performance, raising serious concerns among industry users regarding personnel safety and equipment reliability. In response, a collaborative research program between the Electric Power Research Institute and Structural Integrity Associates, Inc. has been initiated to comprehensively address these critical material challenges. The program's extensive scope encompasses a holistic approach to material management, including rigorous investigations spanning material procurement, shop fabrication, field erection, and appropriate quality assurance procedures for each implementation phase. The research will systematically examine the behavior of both base and weld metals, with a strategic focus on developing a comprehensive life prediction methodology and optimizing maintenance protocols. Beyond its core technical objectives, the program is designed to facilitate knowledge exchange through regular participant workshops, where both program-generated findings and global utility experiences will be critically reviewed and discussed to ensure the research maintains optimal direction and relevance. This collaborative effort aims to establish a robust framework for understanding, mitigating, and managing the complex challenges associated with CSEF steel materials in high-performance industrial applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 393-407, August 31–September 3, 2010,
... to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability. forgings fossil components hot isostatic processing microstructure nickel-based alloys casting powder metallurgy power generation...
Abstract
View Papertitled, The Manufacture of Large, Complex Fossil Components Using Powder Metallurgy and HIP Technologies—A Feasibility Study
View
PDF
for content titled, The Manufacture of Large, Complex Fossil Components Using Powder Metallurgy and HIP Technologies—A Feasibility Study
The manufacture of large, complex components for ultra-supercritical and oxy-combustion applications will be extremely costly for industry over the next few decades as many of these components will be manufactured from expensive, high strength, nickel-based alloys casting and forgings. The current feasibility study investigates the use of an alternative manufacturing method, powder metallurgy and hot isostatic processing (PM/HIP), to produce high quality, and potentially less expensive components for power generation applications. Benefits of the process include manufacture of components to near-net shapes, precise chemistry control, a homogeneous microstructure, increased material utilization, good weldability, and improved inspectability.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1204-1214, October 21–24, 2019,
... To investigate manufacturability, weld-ability and strength of this new alloy, we manufactured a 14-ton class large forged rotor made of TOS1X- with a diameter of 1,100mm and length of 2,400mm (Figure 2). In nondestructive inspection, no particular cracks or problems were detected. After good manufacturability...
Abstract
View Papertitled, Development of Steam Turbine for A-USC Plant
View
PDF
for content titled, Development of Steam Turbine for A-USC Plant
Enhancement of the steam conditions is one of the most effective measures to achieve the goal of higher thermal efficiency. 700°C class A-USC (Advanced Ultra Super Critical Steam Conditions) power plant is one of the remarkable technologies to achieve the goal and reduce CO 2 emissions from fossil fuel power plants. Toshiba has been working on the A-USC development project with subsidy from METI (Ministry of Economy, Trade and Industry) and NEDO (New Energy and Industrial Technology Development Organization). In this project, A-USC power plants with steam parameters of 35MPa 700/720/720°C were considered. To date, various materials have been developed and tested to verify their characteristics for use in A-USC power plants. And some of these materials are being investigated as to their suitability for use in long term. Together with members of the project, we carried out the boiler component test using a commercially-operating boiler. We manufactured a small-scale turbine casing made of nickel-based alloy, and supplied it for the test. In addition, we manufactured a turbine rotor for turbine rotation tests, and carried out the test at 700°C and rotating speed of 3,600rpm conditions. In this paper, we show the results of the A-USC steam turbine development obtained by the project.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 690-701, October 11–14, 2016,
... valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section...
Abstract
View Papertitled, Development of Large Sand Casting of Haynes 282 for A-USC Turbine
View
PDF
for content titled, Development of Large Sand Casting of Haynes 282 for A-USC Turbine
The United States Department of Energy Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have led a U.S. consortium tasked with development of the materials technology necessary to build an advanced-ultra-Supercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). Part of this effort has focused on the need for higher temperature capable materials for steam turbine components, specifically cast nickel-base superalloys such as Haynes 282 alloy. As the size of the needed components is much larger than is capable of being produced by vacuum casting methods typically used for these alloys, an alternative casting process has been developed to produce the required component sizes in Haynes 282 alloy. The development effort has progressed from production of sub-scale sand castings to full size sand and centrifugal castings. The aim of this work was to characterize the microstructure and properties of a nickel alloy 282 casting with section size and casting weights consistent with a full sized component. A 2720 kg (6000 lbs.) nickel alloy 282 sand casting was produced and heat treated at MetalTek International. The casting was a half valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section thicknesses. Further analysis of the microstructure was carried out using light microscopy (LM), scanning electron microscopy (SEM), and X-ray spectroscopy (EDS). The paper also presents the mechanical properties obtained from the various sections of the large casting.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
... there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface...
Abstract
View Papertitled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
View
PDF
for content titled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
1