Skip Nav Destination
Close Modal
Search Results for
infiltration
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3 Search Results for
infiltration
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1331-1337, October 15–18, 2024,
... Abstract A thorough understanding of interactions between graphite and fluoride fuel salts is crucial, as graphite is a promising candidate for the moderator of molten salt reactors. This study investigates the infiltration of fluoride fuel salts into graphite and the fluorination of graphite...
Abstract
View Paper
PDF
A thorough understanding of interactions between graphite and fluoride fuel salts is crucial, as graphite is a promising candidate for the moderator of molten salt reactors. This study investigates the infiltration of fluoride fuel salts into graphite and the fluorination of graphite by these salts under various pressures and temperatures. A high-pressure salt infiltration test apparatus was developed to examine the infiltration of NaF-KF-UF 4 and NaF-BeF 2 -UF 4 -ZrF 4 fuel salts into two types of graphite at high temperatures. For tests using NaF-BeF 2 -UF 4 -ZrF 4 , two different temperatures were selected to assess the impact of temperature on threshold pressure. The study observed salt infiltration into graphite at pressures exceeding its threshold pressure, and the threshold pressure for infiltration was lower at the higher temperature. In addition, the formation of carbon fluorides on the surface of post-test graphite specimens was identified.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
... a deposition map. Deposit Material properties Composition, Cp, Young s modulus, Gas properties V iscosity model Infiltration analysis Temperature, speed, Deposition model Deposition thickness map Lifing tool Surface Material properties Composition, roughness, Young s modulus, Surface Geometry...
Abstract
View Paper
PDF
Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation of components in hot gas flow path. The main potential risk of material degradation from these fuels is “hot corrosion” due to the contaminants listed above combined with alkali metal salts from ambient air. Depending on the temperature regime hot corrosion can damage both TBC coatings and bond coat/substrate materials. Deposit-induced or hot corrosion has been defined as “accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit”. For the initiation of hot corrosion, deposition of the corrosive species, e.g. vanadates or sulfates, is necessary. In addition to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly on following three factors: deposit chemistry, gas constituents and metal alloy (or bond coating/thermal barrier coating) composition. This paper reports the activities involved in establishing modeling and simulation followed by testing/characterization methodologies in relevant environments to understand the degradation mechanisms essential to assess the localized risk for fuel flexible operation. An assessment of component operating conditions and gas compositions throughout the hot gas paths of the gas turbines, along with statistical materials performance evaluations of metal losses for particular materials and exposure conditions, are being combined to develop and validate life prediction methods to assess component integrity and deposition/oxidation/corrosion kinetics.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, October 15–18, 2024,
.... The matrix material used for the impregnation of the fibers was based on a polysiloxane. Table 1 gives an overview on the configuration of the jackets. Table 1: Overview on specimens, jacket manufacturers an configuration of the jackets Specimen Jacket Manufacturer Additional infiltrations with matrix...
Abstract
View Paper
PDF
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.