Skip Nav Destination
Close Modal
Search Results for
image analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 268
Search Results for image analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
Microstructural Analysis of MoSiBTiC Alloys Based on Scanning Electron Microscopy Image Segmentation
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 507-516, February 25–28, 2025,
... Abstract The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase...
Abstract
View Papertitled, Microstructural <span class="search-highlight">Analysis</span> of MoSiBTiC Alloys Based on Scanning Electron Microscopy <span class="search-highlight">Image</span> Segmentation
View
PDF
for content titled, Microstructural <span class="search-highlight">Analysis</span> of MoSiBTiC Alloys Based on Scanning Electron Microscopy <span class="search-highlight">Image</span> Segmentation
The microstructure of MoSiBTiC alloys is very complex, with three to four constituent phases and characteristic structures such as fine precipitates and lamellar structures. To perform the microstructural analysis efficiently, image segmentation was first performed for each phase of the microstructural images. Utilizing the Trainable Weka Segmentation method based on machine learning, the required segmentation time was dramatically reduced. Furthermore, by pre-adjusting the contrast of the images, the segmentation could be performed accurately for gray phases with different shades of gray. In addition, the U-Net method, based on deep learning, could perform highly accurate segmentation of characteristic microstructures consisting of multiple phases. The correlations between microstructural features and hardness were investigated using the segmented images in this study. The findings revealed that the volume fraction of each phase and the number of TiC clusters within the field of view significantly influenced hardness. This suggests that the hardness of MoSiBTiC alloys may be controlled by controlling the amount of TiC precipitates.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 219-234, February 25–28, 2025,
..., and Repair for Power Plants: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0219 Copyright © 2024 ASM International® All rights reserved. www.asminternational.org CREEP CAVITATION IMAGING AND ANALYSIS IN 9%CR 1%MO...
Abstract
View Papertitled, Creep Cavitation <span class="search-highlight">Imaging</span> and <span class="search-highlight">Analysis</span> in 9%Cr-1%Mo P91 Steels
View
PDF
for content titled, Creep Cavitation <span class="search-highlight">Imaging</span> and <span class="search-highlight">Analysis</span> in 9%Cr-1%Mo P91 Steels
The current research adopts a novel approach by integrating correlative microscopy and machine learning in order to study creep cavitation in an ex-service 9%Cr 1%Mo Grade 91 ferritic steel. This method allows for a detailed investigation of the early stages of the creep life, enabling identification of features most prone to damage such as precipitates and the ferritic crystal structure. The microscopy techniques encompass Scanning Electron Microscopy (SEM) imaging and Electron Back-scattered Diffraction (EBSD) imaging, providing insights into the two-dimensional distribution of cavitation. A methodology for acquiring and analysing serial sectioning data employing a Plasma Focused Ion Beam (PFIB) microscope is outlined, complemented by 3D reconstruction of backscattered electron (BSE) images. Subsequently, cavity and precipitate segmentation was performed with the use of the image recognition software, DragonFly and the results were combined with the 3D reconstruction of the material microstructure, elucidating the decoration of grain boundaries with precipitation, as well as the high correlation of precipitates and grain boundaries with the initiation of creep cavitation. Comparison between the 2D and 3D results is discussed.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1340-1350, October 21–24, 2019,
... microscopy to quantify: a) voids, b) dislocation density, c) sub-grains, and d) precipitates (M 23 C 6 , MX, Laves, Z-phase) in the materials. Semi-automated image analysis was performed using the image analysis software MIPARTM. The pre-existing creep voids in the creep aged parent material and the large M...
Abstract
View Papertitled, Microstructural Evolution of a Creep Aged Tempered Martensitic Ferritic Steel during Welding
View
PDF
for content titled, Microstructural Evolution of a Creep Aged Tempered Martensitic Ferritic Steel during Welding
The present study presents a detailed investigation on the evolution of the microstructure during welding on virgin and long-term service exposed (creep aged 1 = 535°C; 16.1 MPa; 156 kh and creep aged 2 = 555°C; 17.0 MPa; 130 kh) 12% Cr (X20CrMoV11-1) martensitic steel. This study was carried out in order to understand the impact of welding on prior creep exposed Tempered martensite ferritic (TMF) steel and to explain the preferential failure of weldments in the fine grained heat affected zone (FGHAZ) of the creep aged material side instead of the new material side. Gleeble simulation (Tp = 980°C; heating rate = 200 °C/s; holding time = 4 seconds) of the FGHAZ was performed on the materials to create homogeneous microstructures for the investigation. Quantitative microstructural investigations were conducted on the parent plate and simulated FGHAZ materials using advanced electron microscopy to quantify: a) voids, b) dislocation density, c) sub-grains, and d) precipitates (M 23 C 6 , MX, Laves, Z-phase) in the materials. Semi-automated image analysis was performed using the image analysis software MIPARTM. The pre-existing creep voids in the creep aged parent material and the large M 23 C 6 carbides (Ø > 300 nm) in the FGHAZ after welding are proposed as the main microstructural contributions that could accelerate Type IV failure on the creep aged side of TMF steel weldments.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 783-789, October 3–5, 2007,
...' microstructures exhibited highly sensitive responses to these loading conditions. A newly developed quantitative image analysis method was used to characterize these morphological changes, and the findings were compiled into a two-dimensional map to facilitate failure analysis and other engineering applications...
Abstract
View Papertitled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
View
PDF
for content titled, Prediction of In-Service Stress States of Single Crystal Superalloys Based on Mathematical Analyses of γ/γ' Microstructural Morphologies
The morphology of γ/γ' microstructures in single crystal superalloys is known to evolve during service conditions according to established materials science principles, potentially offering a novel approach for failure analysis. This study investigated the morphological changes in γ/γ' microstructures of CMSX-4, a single crystal Ni-base superalloy, under various loading conditions. The experimental parameters included tensile and compressive stress levels, loading temperature, loading rate, monotonic versus cyclic loading, and multi-axial stress states. Results demonstrated that the γ/γ' microstructures exhibited highly sensitive responses to these loading conditions. A newly developed quantitative image analysis method was used to characterize these morphological changes, and the findings were compiled into a two-dimensional map to facilitate failure analysis and other engineering applications.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1109-1122, October 21–24, 2019,
..., based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute...
Abstract
View Papertitled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
View
PDF
for content titled, Characterization of Suitable Fillers for Butt Weld of Creep Aged X20 and Virgin P91 Pipes
Components such as tubes, pipes and headers used in power generation plants are operated in a creep regime and have a finite life. During partial replacement, creep exhausted materials are often welded to virgin materials with superior properties. The aim of this study was to identify a suitable weld filler material to join creep aged X20CrMoV12-1 to a virgin P91 (X10CrMoVNbV9-1) steel. Two dissimilar joints were welded using the gas tungsten arc welding (GTAW) process for the root passes, and manual metal arc (MMA) welding for filling and capping. The X20 and the P91 fillers were selected for joining the pipes. The samples were further heat treated at 755°C to stress relief the samples. Microstructural evolution and mechanical properties of the weld metals were evaluated. The average hardness of X20 weld metal (264 HV10) was higher than the hardness measurement of P91 weld metal (206 HV10). The difference in hardness was attributed to the high carbon content in X20 material. The characterisation results revealed that the use of either X20 or P91 weld filler for a butt weld of creep aged X20 and virgin P91 pipes material does not have a distinct effect on the creep life and creep crack propagation mechanism. Both weld fillers (X20 and P91) are deemed to be suitable because limited interdiffusion (<10 μm) of chromium and carbon at the dissimilar weld interface was observed across the fusion line. The presence of a carbon ‘denuded’ zone was limited to <10 μm in width, based on the results from local measurements of the precipitate phase fractions using image analysis and from elemental analysis using EDS. However the nanoindentation hardness measurements across the fusion line could not detect any ‘soft’ zone at the dissimilar weld interface. The effect of the minute denuded zone was also not evident when the samples were subjected to nanoindentation hardness testing, tensile mechanical testing, Small Punch Creep Test (SPCT) and cross weld uniaxial creep testing.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 726-737, October 21–24, 2019,
... evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase formed...
Abstract
View Papertitled, A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples
View
PDF
for content titled, A Study of Sigma Phase Evolution in Long-Term Creep Tested Super 304H Samples
Due to their excellent high temperature oxidation resistance, utilities worldwide are adopting advanced austenitic stainless steels (A-ASS) for critical plant components, such as heat exchangers, as they aim to achieve higher operating conditions. However, challenges may be encountered in developing life assessment and life management strategies for such components. This is because conventional methods used for life assessment, such as measuring steam side oxide scale thickness in ferritic and conventional austenitic material to predict tube metal temperature, may not be successfully applied to A-ASS. In such instances, tracking the formation and evolution of microstructural features during service, may offer a possible method to predict the temperature of these steels. For such metallurgy based lifing strategy to be successful, it is essential to develop a good understanding of microstructure evolution in these steels. In this work one heat of Super 304H, that has been creep tested at 600°C, 650°C and 700°C, with applied stress ranging from 110 to 340 MPa, is characterized using a combination of advanced characterization tools and image analysis methods. The amount of sigma phase formed at the gauge and grip sections of the samples is quantified and the methodology used to quantify this phase is presented. From the results, a time-temperature-transformation diagram for sigma formation is developed.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 972-985, August 31–September 3, 2010,
... hours which is contrary to thermodynamic predictions. In addition X-ray diffraction (XRD) and image analysis has been carried out to semi-quantitatively measure the amount of sigma phase present. The area fraction of sigma has been found to be 2.77 and 2.23 percent at 700 and 750 °C respectively...
Abstract
View Papertitled, Sigma Phase Precipitation in 347HFG Stainless Steel for Supercritical Power Plant Operation
View
PDF
for content titled, Sigma Phase Precipitation in 347HFG Stainless Steel for Supercritical Power Plant Operation
The microstructural evolution has been investigated for an 18Cr-12Ni stainless steel (347HFG) that has been subject to a thermo-mechanical treatment to obtain a fine grain size (ASTM 7-10). In particular, sigma phase precipitation and growth has been evaluated. Samples of 347HFG stainless steel have been isothermally heat treated to reproduce and accelerate the ageing conditions experienced in-service at temperatures between 600 and 750 °C for up to 10,000 hours. Results have shown that sigma phase is precipitated at triple points and along grain boundaries after as little as 1000 hours which is contrary to thermodynamic predictions. In addition X-ray diffraction (XRD) and image analysis has been carried out to semi-quantitatively measure the amount of sigma phase present. The area fraction of sigma has been found to be 2.77 and 2.23 percent at 700 and 750 °C respectively. This is a higher volume fraction of sigma phase than has been previously observed in regular 347H at these conditions. It is thought that this is due to the reduced grain size that has provided an increase in nucleation sites and diffusion paths that can enhance the precipitation and growth of sigma phase. The results from this study are discussed with regards to the effect of precipitation on the service life of a 347HFG stainless steel tube operating in advanced supercritical boilers.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 412-423, October 22–25, 2013,
... Abstract A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation...
Abstract
View Papertitled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
View
PDF
for content titled, NiCoCrAlYHf Coating Evolution through Multiple Refurbishment Processing on a Single Crystal Nickel Superalloy
A combination of creep tests, ex-service blade samples, thermodynamic equilibrium calculations, combined thermodynamic and kinetic calculations, image analysis, chemical composition mapping and heat treatments have been conducted on PWA1483 to determine if microstructural rejuvenation can be achieved when taking the presence of oxidation coatings into account as part of a blade refurbishment strategy. The work has shown that the γ′ morphology changes during creep testing, and that through subsequent heat treatments the γ′ microstructure can be altered to achieve a similar γ′ size and distribution to the original creep test starting condition. Thermodynamic equilibrium calculations have been shown to be helpful in determining the optimum temperatures to be used for the refurbishment heat treatments. The interaction of oxidation resistant coatings with the alloy substrate and refurbishment process have been explored with both experimental measurements and coupled thermodynamic and kinetic calculations. The predictive nature of the coupled thermodynamic and kinetic calculations was evaluated against an ex-service blade sample which had undergone refurbishment and further ageing. In general there was good agreement between the experimental observations and model predictions, and the modelling indicated that there were limited differences expected as a result of two different refurbishment methodologies. However, on closer inspection, there were some discrepancies occurring near the interface location between the coating and the base alloy. This comparison with experimental data provided an opportunity to refine the compositional predictions as a result of both processing methodologies and longer term exposure. The improved model has also been used to consider multiple processing cycles on a sample, and to evaluate the coating degradation between component service intervals and the consequences of rejuvenation of the blade with repeated engine exposure. The results from the experimental work and modelling studies potentially offer an assessment tool when considering a component for refurbishment.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 635-649, February 25–28, 2025,
... then used in successive sequence for polishing of the mounted surfaces. The final polishing step used a 0.04 µm colloidal silica suspension. The cross sections from the tubes were imaged using a Keyence VHX-7000 microscope. 637 Compositional analysis Detailed composition analysis was conducted on each heat...
Abstract
View Papertitled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term Service Aged Components
View
PDF
for content titled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term Service Aged Components
Super 304H is a new generation of advanced austenitic stainless steels that is increasingly being used in superheater/ reheater (SH/RH) sections of thermal ultra-supercritical steam power plants due to its high creep strength combined with good oxidation resistance and microstructure stability. However, recent studies have shown significant microstructural changes and associated degradation in creep performance during long-term service exposure in this alloy. Microstructure evolution during service and its effect on the long-term creep performance has not been comprehensively assessed. In this work, variations in the microstructure of long-term service exposed Super 304H RH tubes (~99,600 hours at 596°C steam temperature) are documented. The results for the ex-service material are compared to well-documented laboratory studies to provide perspective on improved life management practices for this mainstay advanced stainless steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... (LaB6) allows for the simultaneous observation of dislocations networks, grain boundaries and precipitates. A total of 10x (5 x 5 µm) areas were imaged for each weldment region. Semi-automated image analysis was performed using MIPARTM [19] to quantify the different features of interest. Stereological...
Abstract
View Papertitled, Microstructural Characterization and Small Punch Creep Testing of 9-12%Cr Steel Weldments
View
PDF
for content titled, Microstructural Characterization and Small Punch Creep Testing of 9-12%Cr Steel Weldments
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 294-303, October 21–24, 2019,
... and a JEOL 7800F. The versa was used for large area SEM montages and the 7800F was preferred for inclusion analysis and low kV high magnification imaging. For inclusion analysis the microscope was used in conjunction with an Oxford Instruments ultimax 100 mm2 Energy Dispersive Spectroscopy (EDS) detector...
Abstract
View Papertitled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
View
PDF
for content titled, A Standardized Approach for the Quantification of Microstructure in 9Cr Steels
In order to understand the microstructural evolution during service that 9Cr steels experience it is important to be able to quantify key microstructural parameters that define the characteristics of the secondary phases (e.g. precipitated phases and inclusions) and the steel matrix. The average size of M 23 C 6 , Laves phase and MX particles in these materials have been reported in many studies, however comparability between these studies is compromised by variations in technique and different/incomplete reporting of procedure. This paper provides guidelines on what is required to accurately measure these parameters in a reproducible way, taking into account macro-scale chemical heterogeneities and the statistical number of particles required to make meaningful measurements. Although international standards do exist for inclusion analysis, these standards were not developed to measure the number per unit area of hard particles that can act as creep cavity nucleation sites. In this work a standardized approach for measuring inclusions from this perspective is proposed. In addition the associated need to understand the segregation characteristics of the material are described, which in addition to defining the area that needs to be analysed to measure the average number of inclusions per unit area, also allows the maximum number of inclusions per unit area to be determined, a parameter which is more likely to define the damage tolerance of the material.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 110-126, August 31–September 3, 2010,
... for both imaging and chemical analysis. The FEGSEM was operated in back scatter mode to distinguish between similar sized and shaped precipitates by utilising atomic number contrast. The SEM was operated in a voltage range of 5-20 kV and at a working distance between 3-15 mm, depending on the mode being...
Abstract
View Papertitled, Microstructural Evolution in Nimonic 263 for High-Temperature Power Plants
View
PDF
for content titled, Microstructural Evolution in Nimonic 263 for High-Temperature Power Plants
To address current energy and environmental demands, the development and implementation of more efficient power plants is crucial. This efficiency improvement is primarily achieved by increasing steam temperatures and pressures, necessitating the introduction of new materials capable of withstanding these extreme conditions. Nickel-based alloys emerge as prime candidates for high-temperature and high-pressure applications, offering significant creep strength and the ability to operate at metal temperatures above 750°C. This research focuses specifically on steam header and pipework systems, which are critical components carrying steam from boilers to turbines under severe operating conditions. The study emphasizes the importance of selecting suitable materials for these components and developing methodologies to predict their safe operating lifetimes, thereby ensuring the reliable and efficient operation of next-generation power plants.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
... used in the study. After the FEGSEM images were taken, further microstructural quantification such as the area fraction of secondary precipitate particles and channel widths were determined using image analysis tools. For the area fraction measurement, suitable contrast and brightness settings...
Abstract
View Papertitled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant Applications as a Consequence of High Temperature Degradation and Rejuvenation Heat Treatments
View
PDF
for content titled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant Applications as a Consequence of High Temperature Degradation and Rejuvenation Heat Treatments
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 568-580, October 11–14, 2016,
... sufficient contrast between the matrix and particles for automated image analysis to be employed. The collection parameters used were a 30 kV ion beam, a 30 pA ion beam current, a frame collection speed of 2.4 mins (150 s dwell time) collecting images with a 25.6 m horizontal field width (HFW...
Abstract
View Papertitled, The Effect of Pre-Service Treatments on the Long Term Properties of 9Cr Steels Strengthened by Boron and Nitrogen
View
PDF
for content titled, The Effect of Pre-Service Treatments on the Long Term Properties of 9Cr Steels Strengthened by Boron and Nitrogen
Martensitic 9Cr steels have been developed which are strengthened by boron in order to stabilize the microstructure and improve their long-term creep strength. Boron plays a key role in these steels by stabilising the martensitic laths by decreasing the coarsening rate of M 23 C 6 carbides, which act as pinning points in the microstructure. In this work two modified FB2 steel forgings are compared. Both forgings have similar compositions but one underwent an additional remelting process during manufacture. Creep tests showed that this additional processing step resulted in a significant increase in time to failure. In order to investigate the effect of the processing route on microstructural evolution during aging and creep, a range of advanced electron microscopy techniques have been used including ion beam induced secondary electron imaging and High Angle Annular Dark Field (HAADF) imaging in the Scanning Transmission Electron Microscope. These techniques have enabled the particle population characteristics of all the second phase particles (M 23 C 6 , Laves phase, BN and MX) to be quantified for materials from both forging processes. These quantitative data have enabled a better understanding of how the processing route affects the microstructural evolution of FB2 steels.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 384-396, February 25–28, 2025,
... effort between UW Madison and EPRI developed a method and metric for evaluating the extent of diffusion bond growth in microscopy samples. The method uses image analysis software to detect and sort grains within a microscope image of a DB sample. The grains are evaluated relative to the bond line...
Abstract
View Papertitled, Evaluating Quality of Diffusion Bonded Material through Microscopy Measurement of Bondline Grain Growth
View
PDF
for content titled, Evaluating Quality of Diffusion Bonded Material through Microscopy Measurement of Bondline Grain Growth
Simple and effective material examination methods are desired for the diffusion bonding process, so that bonding produced components, such as compact heat exchangers, can be used in nuclear applications. Optical microscopy of diffusion bond process samples is a quick way to examine diffusion bond-line microstructure and to evaluate material quality. The stacked nature of a diffusion bonded-block results in distinct regions of grain growth both at and away from the bond interface. Strong diffusion bond materials exhibit grain growth across the original bond interface plane, weak materials have little-to-no growth across. A series of 316H diffusion bonded specimens of differing quality and strength were examined using optical microscopy. The microstructure both at and away from the bond interface was examined over 15mm long sections of the bond-line. A metric for evaluating bond growth is proposed. This is defined as the Bond Line Growth Threshold (BLGT) and is evaluated as the percentage of the bond line with grains meeting the threshold. Here a fraction of the diffusion bond is considered bonded when its grains exceed a threshold of growth past the bond interface. The BLGT is determined through automated image processing methods.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 735-746, October 11–14, 2016,
... analysis to quantify precipitates was performed using the ImageJ image analysis software. Precipitates were highlighted using image thresholding and the software was then used to analyse size, area percentage and counts. A number of areas were analysed in each sample, the precipitates were highlighted...
Abstract
View Papertitled, Comparison of the Effects of Conventional Heat Treatments on Cast and Selective Laser Melted IN939 Alloy
View
PDF
for content titled, Comparison of the Effects of Conventional Heat Treatments on Cast and Selective Laser Melted IN939 Alloy
Additive manufacturing (AM) is a process where, as the name suggests, material is added during production, in contrast to techniques such as machining, where material is removed. With metals, AM processes involve localised melting of a powder or wire in specific locations to produce a part, layer by layer. AM techniques have recently been applied to the repair of gas turbine blades. These components are often produced from nickel-based superalloys, a group of materials which possess excellent mechanical properties at high temperatures. However, although the microstructural and mechanical property evolution during the high temperature exposure of conventionally produced superalloy materials is reasonably well understood, the effects of prolonged high temperature exposure on AM material are less well known. This research is concerned with the microstructures of components produced using AM techniques and an examination of the effect of subsequent high temperature exposures. In particular, the paper will focus on the differences between cast and SLM IN939 as a function of heat treatment and subsequent ageing, including differences in grain structure and precipitate size, distribution and morphology, quantified using advanced electron microscopy techniques.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 738-749, October 21–24, 2019,
..., 36, 100 h 739 Optical microscopy (OM) and scanning electron microscopy (SEM) were used for microstructural observations. In addition, the quantification of the phase area fractions was performed using SEM images. The image analysis software WinROOF 2013 was used for microstructural quantification...
Abstract
View Papertitled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
View
PDF
for content titled, Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718
Alloy 718 is one of the most useful heat-resistant alloys for important device components that require high-temperature properties. In order to obtain excellent mechanical properties, it is necessary to form fine grains, for which the pinning effect of the δ phase can be used in some cases. To precipitate a sufficient amount for the pinning effect, time-consuming isothermal heat treatments are required. Thus, a metallurgical method with a shortened holding time would improve production efficiency considerably. Our goal is to optimize the forging process to control grain size by utilizing the δ phase, and the purpose of this study was to investigate the influence of the initial microstructure of the precipitated γ″ phase on δ-phase precipitation behavior in Alloy 718. As a solute treatment, Alloy 718 was heated at 1050 °C for 4 h, followed by heating of some samples at 870 °C for 10 h to precipitate the γ″ phase. The specimen with precipitated γ″ phase showed more precipitated δ phase than that under the solute condition by comparing results of heating at 915 °C. This suggested that utilizing the γ″ phase promoted δ-phase precipitation, and it is thus expected to shorten the heat treatment time for δ-phase precipitation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 74-89, October 11–14, 2016,
... stage with a maximum travel distance of 100 mm in both the X and Y orientations. The Keyence microscope utilizes two pieces of software which are important to the analysis of as-obtained images: The VK Image Stitching Software and the VK Image Analyzer Software. The VK Image Stitching Software merges...
Abstract
View Papertitled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
View
PDF
for content titled, Component Relevant Creep Damage in Tempered Martensitic 9 to 12 %Cr Steels
Creep brittle behaviour in tempered martensitic, creep strength enhanced ferritic (CSEF) steels is linked to the formation of micro voids. Details of the number of voids formed, and the tendency for reductions in creep strain to fracture are different for the different CSEF steels. However, it appears that the susceptibility for void nucleation is related to the presence of trace elements and hard non-metallic inclusions in the base steel. A key factor in determining whether the inclusions present will nucleate voids is the particle size. Thus, only inclusions of a sufficient size (the critical inclusion size is directly linked to the creep stress) will act directly as nucleation sites. This paper compares results from traditional uniaxial laboratory creep testing with data obtained under multiaxial conditions. The need to understand and quantify how metallurgical and structural factors interact to influence creep damage and cracking is discussed and the significant benefits available through the use of high quality steel making and fabrication procedures are highlighted. Details of component behaviour are considered as part of well-engineered, Damage Tolerant, design methods.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 703-714, October 21–24, 2019,
... hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX...
Abstract
View Papertitled, Characterization of the Microstructural Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
View
PDF
for content titled, Characterization of the Microstructural Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless Steel
Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes as this will help researchers understand the long-term microstructural evolution and degradation of the material, which can impact the performance and lifetime of the components that are in service. In this research, the microstructure of an ex-service Super 304H reheater tube that has been in service for 99,000 hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX carbonitrides rich in niobium, copper-rich particles, M 23 C 6 , sigma phase, Z phase, a cored phase, and a BCC phase.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 685-693, October 21–24, 2019,
.... Therefore, how to realize high-quality image dehazing or image enhancement inside the tube has very important practical significance for the application of corrosion image analysis and video processing inside the tube. At present, image preprocessing technology is mainly divided into dehazing...
Abstract
View Papertitled, Study on the Test Method of Oxide Scale Adhesion inside Superheater/Reheater Tubes Based on <span class="search-highlight">Image</span> Recognition
View
PDF
for content titled, Study on the Test Method of Oxide Scale Adhesion inside Superheater/Reheater Tubes Based on <span class="search-highlight">Image</span> Recognition
The fall-off of oxide scale with poor adhesion inside superheater/reheater tubes in boilers for (ultra) supercritical power unit is the main cause of accidents such as superheater/reheater blockage, tube explosion and solid particle erosion in the steam turbine which cause serious economic losses. However, there is still no method for testing and assessing the adhesion of oxide scale inside the tube. A method for testing the adhesion of corrosion products in tubes by spiral lines is proposed in this paper, and the accuracy of adhesion evaluation is improved by adopting the image recognition method.
1