Skip Nav Destination
Close Modal
Search Results for
high-temperature strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 572
Search Results for high-temperature strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 242-253, October 22–25, 2013,
... Abstract High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties...
Abstract
View Papertitled, Evaluation of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
View
PDF
for content titled, Evaluation of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> of a Ni-Base Alloy 740H for Advanced Ultra-Supercritical Power Plant
High temperature strength of a nickel-based superalloy, Alloy 740H, was investigated to evaluate its applicability to advanced ultrasupercritical (A-USC) power plants. A series of tensile, creep and fatigue tests were performed at 700°C, and the high temperature mechanical properties of Alloy 740H was compared with those of other candidate materials such as Alloy 617 and Alloy 263. Although the effect of the strain rate on the 0.2% proof stress was negligible, the ultimate tensile strength and the rupture elongation significantly decreased with decreasing strain rate, and the transgranular fracture at higher strain rate changed to intergranular fracture at lower strain rate. The time to creep rupture of Alloy 740H was longer than those of Alloy 617 and Alloy 263. The fatigue limit of Alloy 740H was about half of the ultimate tensile strength. Further, Alloy 740H showed greater fatigue strength than Alloy 617 and Alloy 263, especially at low strain range.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 762-770, October 21–24, 2019,
... the morphology of the Cr ss + Cr 3 Si two-phase microstructure. chromium-silicon binary alloys compression test eutectic microstructure high-temperature strength hypoeutectic alloys mechanical properties nickel base superalloys phase structure Joint EPRI 123HiMAT International Conference...
Abstract
View Papertitled, Microstructure and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> in Cr-Si Binary Alloys
View
PDF
for content titled, Microstructure and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> in Cr-Si Binary Alloys
Cr-based alloys have potential as heat-resistant materials due to the higher melting point and lower density of Cr. Although oxidation and nitridation at high temperatures are one of the drawbacks of Cr and Cr-based alloys, addition of Si has been reported to enhance the oxidation and nitridation resistance. This study focuses on the microstructure and mechanical properties in the Cr-Si binary alloys with the Cr ss + Cr 3 Si two-phase structure. The Cr-16at.%Si alloy showed an eutectic microstructure and hypoeutectic alloys with the lower Si composition exhibited a combination of the primary Cr ss and the Cr ss /Cr 3 Si eutectic microstructure. Compression tests at elevated temperatures were conducted for the hypoeutectic and the eutectic alloys in vacuum environment. Among the investigated alloys, the Cr-13at.%Si hypoeutectic alloy including the Cr 3 Si phase of about 40% was found to show the highest 0.2% proof stress of 526 MPa at 1000 °C. Its specific strength is 78.1 Nm/g which is roughly twice as high as that of Ni-based Mar-M247 alloy. It was also confirmed that the 0.2% proof stress at 1000 °C depends on not only the volume fraction of the Cr 3 Si phase, but also the morphology of the Cr ss + Cr 3 Si two-phase microstructure.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 812-820, October 21–24, 2019,
... strength furnace cooling high-temperature strength microstructure near-alpha titanium alloys niobium oxidation resistance thermomechanical process Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M...
Abstract
View Papertitled, Microstructure Evolution and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> of Thermomechanical Processed Near-α Ti Alloys
View
PDF
for content titled, Microstructure Evolution and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Strength</span> of Thermomechanical Processed Near-α Ti Alloys
Understanding of the thermomechanical processing that affects microstructures is important to develop new alloys, because the mechanical properties of Ti alloys depend on the microstructures. In our previous study, we found Sn deteriorated the oxidation resistance, while Nb improved the oxidation resistance. Then, we have focused on Ti-Al-Nb-Zr alloys which Nb was added instead of Sn. Zr was added for solid solution strengthening. In this study, the formation of microstructures by thermomechanical processing and the effect of microstructure on the mechanical properties were investigated using the Ti-13Al-2Nb-2Zr (at%) alloy. The samples heat-treated in the β+α phase followed by furnace cooling after processed in the β+α phase formed the equiaxed or the ellipsoid α phase surrounded by the β phase. On the other hand, the sample heat-treated in the β+α phase followed by furnace cooling after processed in the β phase formed the lamellar microstructure. The compression strengths of the equiaxed α structure processed at two temperatures in the β+α phase were almost the same. While creep life of the bi-modal structure was drastically changed by processing temperature.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 303-309, October 25–28, 2004,
... Abstract Trials have been performed to study the enhancement of the high temperature strength of alloy 617 by utilizing the solid solution strengthening effects of tungsten additions in the amounts of 3.30 weight % and 5.61 weight %. It could be successfully demonstrated that with the 5.61 wt...
Abstract
View Papertitled, Influence of the Tungsten Addition and Content on the Properties of the <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span>, <span class="search-highlight">High</span>-<span class="search-highlight">Strength</span> Ni-Base Alloy 617
View
PDF
for content titled, Influence of the Tungsten Addition and Content on the Properties of the <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span>, <span class="search-highlight">High</span>-<span class="search-highlight">Strength</span> Ni-Base Alloy 617
Trials have been performed to study the enhancement of the high temperature strength of alloy 617 by utilizing the solid solution strengthening effects of tungsten additions in the amounts of 3.30 weight % and 5.61 weight %. It could be successfully demonstrated that with the 5.61 wt.% tungsten addition, the resultant mechanical high temperature properties in the range of 700 to 750 °C were far superior to standard alloy 617. Also with regard to the oxidation resistance behavior, tungsten alloyed alloy 617 exhibited superior behavior to tungsten free standard alloy 617. Only in the hot corrosion simulated tests, the tungsten containing alloys showed increasing disadvantage with increased tungsten content. However in the real world under actual service conditions, this is of lesser relevance because the gas turbine components are and could be protected by TBC (thermal barrier coatings) and/or MCrAlY coatings. This paper describes the results of these developments. Very recent data generated on the aging response indicates drastic loss in impact values on the tungsten modified alloys after aging at 3000 hours and 5000 hours at 700°C and 750°C.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 732-743, October 22–25, 2013,
... Abstract Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four...
Abstract
View Papertitled, Evaluation of Long-Term Creep Rupture Life of <span class="search-highlight">Strength</span> Enhanced <span class="search-highlight">High</span> Cr Ferritic Steel on the Basis of Its <span class="search-highlight">Temperature</span> Dependence
View
PDF
for content titled, Evaluation of Long-Term Creep Rupture Life of <span class="search-highlight">Strength</span> Enhanced <span class="search-highlight">High</span> Cr Ferritic Steel on the Basis of Its <span class="search-highlight">Temperature</span> Dependence
Conventional time-temperature-parameter (TTP) methods often overestimate long-term creep rupture life of creep strength enhanced high Cr ferritic steels. The cause of the overestimation is studied on the basis of creep rupture data analysis on Gr.91, 92 and 122 steels. There are four regions with different values of stress exponent n for creep rupture life commonly in stress-rupture data of the three ferritic steels. Activation energies Q for rupture life in the regions take at least three different values. The values of n and Q decrease in a longer-term region. The decrease in Q value is the cause of the overestimation of long-term rupture life predicted by the conventional TTP methods neglecting the change in Q value. Therefore, before applying a TTP method creep rupture data should be divided into several data sets so that Q value is unique in each divided data set. When this multi-region analysis is adopted, all the data points of the steels can be described accurately, and their long-term creep life can be evaluated correctly. Substantial heat-to-heat and grade-to-grade variation in their creep strength is suggested under recent service conditions of USC power boilers.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1198-1212, October 25–28, 2004,
... focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested...
Abstract
View Papertitled, Creep <span class="search-highlight">strength</span> of <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Alloys for Ultrasupercritical Steam Boilers
View
PDF
for content titled, Creep <span class="search-highlight">strength</span> of <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Alloys for Ultrasupercritical Steam Boilers
The demand for higher efficiency and reduced emissions in coal-fired power boilers will result in the use of higher steam temperatures and pressures. A significant materials effort is required to reach a target steam condition of 760°C/35MPa. These new Ultrasupercritical (USC) units will require the use of nickel-based superalloys. Long-term creep strength will be a determining factor in achieving the highest possible steam conditions. To this end, the creep strength of commercially available (Haynes 230), modified/controlled chemistry (CCA617/Maгco 617), and new (INCONEL 740) alloys, including weldments, are being investigated at Oak Ridge National Laboratory (ORNL). Creep tests at ORNL show that the CCA617 provides a significant improvement in strength over the standard alloy 617 at 650°C to possibly 750°C. The strength of alloy 230 is well characterized, thus the testing on 230 has focused on specific specimen configurations for evaluating the high temperature behavior of weldments. Creep testing on INCONEL alloy 740 has shown good strengths (higher than 230 or CCA617) that may meet the target steam conditions. Microstructural analysis by electron microscopy on aged and tested material is being used to further understand the structure-properties relationship in these materials and determine long-term stability of the microstructures.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 355-364, February 25–28, 2025,
...: Proceedings from the Tenth International Conference October 15 18, 2024, Bonita Springs Florida, USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0355 Copyright © 2024 ASM International® All rights reserved. www.asminternational.org METAL TEMPERATURE ESTIMATION IN HIGH-STRENGTH AUSTENITIC STAINLESS STEELS...
Abstract
View Papertitled, Metal <span class="search-highlight">Temperature</span> Estimation in <span class="search-highlight">High</span>-<span class="search-highlight">Strength</span> Austenitic Stainless Steels through Precipitation Analysis
View
PDF
for content titled, Metal <span class="search-highlight">Temperature</span> Estimation in <span class="search-highlight">High</span>-<span class="search-highlight">Strength</span> Austenitic Stainless Steels through Precipitation Analysis
In order to comprehensively assess creep damage of 18Cr-9Ni-3Cu-Nb-N steel (ASME SA-213 S30432), which is widely used in critical high-temperature regions of heat transfer tubes of ultrasupercritical (USC) boilers, our investigation centered on the σ phase. This phase undergoes formation and coarsening during prolonged thermal exposure. We developed a technique to estimate operational heating metal temperatures by analyzing average particle size of the σ phase (MLAS-EX). By extracting a certain number of σ phase from the largest particle size, it is possible to select the σ phase that nucleated and grew in the early stage of heating. The correlation between the average particle size and the Hollomon-Jaffe Parameter (HJP), a parameter of heating temperature and time, allows precise estimation of the heating metal temperature. Our validation demonstrates that the replica method, which is a nondestructive method and effective for evaluating actual plants, is also applicable. Using our newly developed technique for estimating heating metal temperature, it is possible to predict the remaining creep life of heat transfer tubes based on data related to creep rupture characteristics, working stress and operating time. The developed method has already been successfully applied to evaluate the creep life of several actual boilers.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 434-446, October 3–5, 2007,
... a significantly higher coefficient of thermal expansion (CTE) compared to 12% Cr steels. Through extensive research, the authors systematically investigated the effects of various alloying elements on thermal expansion and high-temperature strength. As a result of these investigations, they developed "LTES700...
Abstract
View Papertitled, Development of Ni-Based Superalloy for Advanced 700°C-Class Steam Turbines
View
PDF
for content titled, Development of Ni-Based Superalloy for Advanced 700°C-Class Steam Turbines
Advanced 700°C-class steam turbines require the use of austenitic alloys instead of conventional ferritic 12Cr steels, which are inadequate in creep strength and oxidation resistance above 650°C. While austenitic alloys offer improved performance, they traditionally possess a significantly higher coefficient of thermal expansion (CTE) compared to 12% Cr steels. Through extensive research, the authors systematically investigated the effects of various alloying elements on thermal expansion and high-temperature strength. As a result of these investigations, they developed "LTES700," an innovative nickel-based superalloy specifically designed for steam turbine bolts and blades. This novel alloy uniquely combines a coefficient of thermal expansion comparable to 12Cr steels with high-temperature strength equivalent to conventional superalloys like Refractaloy 26, effectively addressing the critical limitations of previous materials.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 282-293, October 21–24, 2019,
... of these creep strength enhanced 9-12%Cr steels is limited to around 630°C or 650°C at maximum in terms of high temperature strength and oxidation resistance. Consequently the appearance of ferritic steels standing up to higher temperature of around 700°C to substitute of high strength austenitic steels...
Abstract
View Papertitled, <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Oxidation Behavior of <span class="search-highlight">High</span> Nitrogen Ferritic Steels
View
PDF
for content titled, <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Oxidation Behavior of <span class="search-highlight">High</span> Nitrogen Ferritic Steels
For last half century the development of creep strength enhanced ferritic steels has been continued and presently ASME grades 91, 92 and 122 extremely stronger than conventional low alloy steels have extensively been used worldwide in high efficient power plants. However the use of these creep strength enhanced 9-12%Cr steels is limited to around 630°C or 650°C at maximum in terms of high temperature strength and oxidation resistance. Consequently the appearance of ferritic steels standing up to higher temperature of around 700°C to substitute of high strength austenitic steels is strongly desired. Under the state, the addition of high nitrogen to ferritic steels is attracting considerable attention because of improving high temperature strength and oxidation resistance of them. This work was done to evaluate the oxidation resistance of high nitrogen steels and to investigate the effect nitrogen and microstructure on oxidation resistance using 9-15%Cr steels with about 0.3% nitrogen manufactured by means of Pressurized Electro- Slag Remelting (PESR) method in comparison with ASME grades 91 and 122. As a result, high nitrogen ferritic steels showed excellent oxidation resistance comparing with nitrogen-free steels and ASME grades 91 and 122. The oxidation resistance of 9%Cr ferritic steels depends on the nitrogen content in the each steel. That is, the weight gain decreases with an increase in nitrogen content. Moreover, the oxide scale of high nitrogen steel contained a high concentration of Cr. It is conjectured that, in high temperature oxidation, nitrogen plays a key role in promoting the formation of the oxide scale which has high concentration of Cr, inhibiting oxidation from proceeding. And also it was found that the oxidation resistance of the high nitrogen steels does not depend greatly on Cr content but on their microstructure. The oxidation resistance of high nitrogen ferritic heat-resistant steels increased as the fraction of martensite structure increased. These results indicate for high nitrogen steels Cr diffusion along grain boundaries is further promoted resulting in the formation of protective oxide scale having high Cr concentration. Furthermore as new findings it was confirmed that the Cr diffusion in substrate of steels to form Cr concentrated oxide scale on the metal surface is accelerated by nitrogen while suppressed by carbon in matrix of steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1193-1203, October 21–24, 2019,
... alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully...
Abstract
View Papertitled, Research and Manufacturing of Waspaloy Alloy as Bolts and Blades for 700 °C A-USC Steam Turbines
View
PDF
for content titled, Research and Manufacturing of Waspaloy Alloy as Bolts and Blades for 700 °C A-USC Steam Turbines
Research and development of 700°C A-USC steam turbine unit needs to be supported by materials with excellent overall performance. Waspaloy is a kind of γ′ phase precipitation hardening superalloy developed by the United States in the 1950s. In the 700°C R&D Plan of Shanghai Turbine Plant, it was selected as a candidate material for high temperature blades and bolts. The composition, microstructure, properties, blade die forging process and bolt rolling process of Waspaloy alloy were researched in this paper. Simultaneously, Shanghai Turbine Plant successfully manufactured Waspaloy alloy trial production for high temperature bolts and blades. The results show that Waspaloy not only has excellent processing performance, but also has good high temperature strength, long-term performance, stress relaxation resistance and long term aging performance stability at 700°C. It can fully meet the requirements of high-temperature blades and bolts of 700°C A-USC unit. It shows that the 700°C A-USC unit high temperature blades and bolts were successfully developed by Shanghai Turbine Plant.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 678-689, October 11–14, 2016,
... coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE...
Abstract
View Papertitled, Development of Low Thermal Expansion Fe-Ni-Cr Austenitic Heat Resistant Steel for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Steam Turbine
View
PDF
for content titled, Development of Low Thermal Expansion Fe-Ni-Cr Austenitic Heat Resistant Steel for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Steam Turbine
Austenitic heat resistant steels are one of the most promising materials to be applied around 650°C, due to its superior creep strength than conventional ferritic steels and lower material cost than Ni based superalloys. The problem of austenitic steels is its high thermal expansion coefficient (CTE), which leads to high deformation and stress when applied in rotors, casings, blades and bolts. To develop low CTE austenitic steels together with high temperature strength, we chose the gamma-prime strengthened austenitic steel, A-286, as the base composition, and decreased the CTE by introducing the invar effect. The developed alloy, Fe-40Ni-6Cr-Mo-V-Ti-Al-C-B, showed low CTE comparable to conventional ferritic steels. This is mainly due to its high Ni and low Cr composition, which the invar effect is prone even at high temperature region. This alloy showed higher yield strength, higher creep rupture strength and better oxidation resistance than conventional high Cr ferritic steels and austenitic steels. The 2 ton ESR ingot was forged or hot rolled without defects, and the blade trial manufacturing was successfully done. This alloy is one of the best candidates for USC and A-USC turbine components.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability...
Abstract
View Papertitled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with <span class="search-highlight">Temperature</span> Capability 800°C
View
PDF
for content titled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with <span class="search-highlight">Temperature</span> Capability 800°C
Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability of 800°C with high manufacturability achieved by controlling microstructure stability and segregation property. The 700°C class A-USC materials are the mainstream of current development, and trial production of 10 ton-class forged parts has been reported. However, there have been no reports on the development and trial manufacturing of the A-USC materials with temperature capability of 800°C. In this report, results of trial manufacturing and its microstructure of the developed superalloy which has both temperature capability 800°C and good manufacturability are presented. The trial manufacturing of the large forging, boiler tubes and turbine blades using developed material were successfully achieved. According to short term creep tests of the large forging and the tube approximate 100,000h creep strength of developed material was estimated to be 270MPa at 700 °C and 100MPa at 800°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 291-302, October 25–28, 2004,
.... The high temperature strength and the intergranular corrosion resistance of the steel are superior to those of conventional 18Cr steels such as TP347H. This excellent creep strength of XA704 is mainly due to precipitation strengthening by CrVN, and solid solution strengthening by tungsten and nitrogen...
Abstract
View Papertitled, Properties of a Newly Developed 18Cr-9NI-Nb-V-W-N-Low C Austenitic Boiler Tube
View
PDF
for content titled, Properties of a Newly Developed 18Cr-9NI-Nb-V-W-N-Low C Austenitic Boiler Tube
A new 18Cr-9Ni-Nb-V-W-N-low C austenitic boiler tube (XA704) has been developed. Conventional high-strength austenitic stainless steel boiler tubes usually have high susceptibility to intergranular corrosion because of their high carbon content, and require special care for heated sections such as weld joints. Generally, when the carbon content decreases, the intergranular corrosion resistance improves, while the creep strength reduces. However, the creep strength of the developed steel is very high despite lower carbon content in comparison to conventional austenitic boiler tubes. The high temperature strength and the intergranular corrosion resistance of the steel are superior to those of conventional 18Cr steels such as TP347H. This excellent creep strength of XA704 is mainly due to precipitation strengthening by CrVN, and solid solution strengthening by tungsten and nitrogen. Matching welding consumables for the developed steel have also been developed. Thus, newly developed XA704 is a promising material for superheater and reheater tubes for the “600°C generation” of USC boilers. XA704 has already been used in six power plants in Japan. Currently, the steel is being standardized in the ASME Code.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1407-1416, October 22–25, 2013,
... treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700oC is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler...
Abstract
View Papertitled, Creep Rupture Properties of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
View
PDF
for content titled, Creep Rupture Properties of Ni-Base Superalloy USC141 as Solution Treated for 700°C Class A-USC Boiler
Low thermal expansion precipitation strengthening Ni-base superalloy, Ni-20Cr-10Mo-1.2Al-1.6Ti alloy (USC141TM), was developed for 700°C class A-USC steam turbine material by Hitachi, Ltd and Hitachi Metals, Ltd. USC141 is usually solution treated and then aged to increase high temperature strength for turbine blades and bolts. As the estimated 105h creep rupture strength at 700°C is about 180MPa, USC141 could also be expected to apply for boiler tubes. On the other hand, this alloy seems to be only solution treated to apply for boiler tubes because tubes are usually jointed by welding and bended by cold working and thus tube alloys should have low hardness before welding and bending and should be used as solution treated. In this study, the creep properties of USC141 as solution treated was evaluated, and the results and microstructures after creep tests were compared with those as aged. As a result, USC141 as solution treated exhibited almost as same creep rupture properties as that as aged because precipitation at grain boundaries and in grains gradually increased at testing temperatures around 700°C. Furthermore seamless tubes of USC141 were produced and various properties including creep properties are now being evaluated.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 468-481, October 22–25, 2013,
... the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room...
Abstract
View Papertitled, Development and Trial Manufacturing of Ni-Based Superalloy “LTES700R” for Advanced 700C Class Steam Turbines
View
PDF
for content titled, Development and Trial Manufacturing of Ni-Based Superalloy “LTES700R” for Advanced 700C Class Steam Turbines
Advanced 700°C-class steam turbines demand austenitic alloys for superior creep strength and oxidation resistance beyond 650°C, exceeding the capabilities of conventional ferritic 12Cr steels. However, austenitic alloys come with a higher coefficient of thermal expansion (CTE) compared to 12Cr steels. To ensure reliability, operability, and performance, these advanced turbine alloys require low CTE properties. Additionally, for welded components, minimizing CTE mismatch between the new material and the welded 12Cr steel is crucial to manage residual stress. This research investigates the impact of alloying elements on CTE, high-temperature strength, phase stability, and manufacturability. As a result, a new material, “LTES700R,” was developed specifically for steam turbine rotors. LTES700R boasts a lower CTE than both 2.25Cr steel and conventional superalloys. Additionally, its room-temperature proof strength approaches that of advanced 12Cr steel rotor materials, while its creep rupture strength around 700°C significantly surpasses that of 12Cr steel due to the strengthening effect of gamma-prime phase precipitates. To assess the manufacturability and properties of LTES700R, a medium-sized forging was produced as a trial run for a turbine rotor. The vacuum arc remelting process was employed to minimize segregation risk, and a forging procedure was meticulously designed using finite element method simulations. This trial production resulted in a successfully manufactured rotor with satisfactory quality confirmed through destructive evaluation.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 274-290, October 25–28, 2004,
.... To limit the use of expensive alloying materials, it is necessary to maximize the strength and corrosion capabilities across the material spectrum from ferritic to austenitic and nickel-based alloys. Sandvik Materials Technology has developed an austenitic alloy, Sanicro 25, with excellent high-temperature...
Abstract
View Papertitled, Sandvik Sanicro 25, A New Material for Ultrasupercritical Coal Fired Boilers
View
PDF
for content titled, Sandvik Sanicro 25, A New Material for Ultrasupercritical Coal Fired Boilers
The power generation industry worldwide aims to develop coal-fired boilers operating at much higher efficiencies than current supercritical plants. This increased efficiency is expected through ultrasupercritical steam conditions, requiring new materials for critical components. To limit the use of expensive alloying materials, it is necessary to maximize the strength and corrosion capabilities across the material spectrum from ferritic to austenitic and nickel-based alloys. Sandvik Materials Technology has developed an austenitic alloy, Sanicro 25, with excellent high-temperature strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status, and properties.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 386-392, August 31–September 3, 2010,
... to use higher strength Ni-base superalloys in addition to conventional heat-resistant steel. However, since the manufacturability of existing commercial Ni-base superalloys is not as good as that of heat-resistant steel, development of new materials with excellent manufacturability and high-temperature...
Abstract
View Papertitled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
View
PDF
for content titled, Alloy Design of Ni-Base Superalloys Aiming for Over 750°C Class A-USC Steam Power Plant
A new Ni-base superalloy has been developed for Advanced Ultra Super Critical (A-USC) power plants operating above 750°C, targeting reduced CO 2 emissions through improved efficiency. While existing research focuses on 700°C-class materials, this study presents a novel alloy design for higher-temperature applications. Using the CALPHAD method, a prototype alloy (Ni-23Co-18Cr-8W-4Al-0.1C) was developed by eliminating Ti, Nb, and Ta to improve hot-workability while maintaining strength. The resulting alloy demonstrates twice the creep strength of Nimonic 263, with an estimated 10 5 h steam turbine creep resistance temperature of 780°C, marking a significant advancement in A-USC material capabilities.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 177-190, October 25–28, 2004,
... techniques employed for these steels are introduced. Additionally, the high-temperature strength and weldability of Alloy 617 (52Ni-22Cr-13Co-9Mo-Ti-Al), a potential candidate material for the next generation of 700°C USC boilers, are described. The paper provides insights into the materials and welding...
Abstract
View Papertitled, The Practical Application and Long-Term Experience of New Heat Resistant Steels to Large Scale USC Boilers
View
PDF
for content titled, The Practical Application and Long-Term Experience of New Heat Resistant Steels to Large Scale USC Boilers
This paper focuses on the key properties of newly developed high-strength, heat-resistant steels for application in ultra-supercritical (USC) boilers. For some ferritic steels, improvements made to enhance their resistance to steam oxidation are highlighted. The latest welding techniques employed for these steels are introduced. Additionally, the high-temperature strength and weldability of Alloy 617 (52Ni-22Cr-13Co-9Mo-Ti-Al), a potential candidate material for the next generation of 700°C USC boilers, are described. The paper provides insights into the materials and welding technologies crucial for the development of advanced USC boilers operating at higher temperatures.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 488-506, October 3–5, 2007,
... CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion...
Abstract
View Papertitled, Effects of Fuel Composition and <span class="search-highlight">Temperature</span> on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
View
PDF
for content titled, Effects of Fuel Composition and <span class="search-highlight">Temperature</span> on Fireside Corrosion Resistance of Advanced Materials in Ultra-Supercritical Coal-Fired Power Plants
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) are co-sponsoring a multi-year project managed by Energy Industries of Ohio (EIO) to evaluate materials for ultra-supercritical (USC) coal-fired boilers. USC technology improves cycle efficiency and reduces CO 2 and pollutant emissions. With turbine throttle steam conditions reaching 732°C (1350°F) at 35 MPa (5000 psi), current boiler materials, which operate below 600°C (1112°F), lack the necessary high-temperature strength and corrosion resistance. This study focuses on the fireside corrosion resistance of candidate materials through field testing. Evaluated materials include ferritic steels (SAVE12, P92, HCM12A), austenitic stainless steels (Super304H, 347HFG, HR3C), and high-nickel alloys (Haynes 230, CCA617, Inconel 740, HR6W), along with protective coatings (weld overlays, diffusion coatings, laser claddings). Prior laboratory tests assessed corrosion under synthesized coal-ash and flue gas conditions for three North American coal types (Eastern bituminous, Midwestern high-sulfur bituminous, and Western sub-bituminous), with temperatures ranging from 455°C (850°F) to 870°C (1600°F). Promising materials were installed on retractable corrosion probes in three utility boilers burning different coal types. The probes maintained metal temperatures between 650°C (1200°F) and 870°C (1600°F). This paper presents new fireside corrosion probe results after approximately one year of exposure for Midwestern and Western coal types.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 400-406, October 11–14, 2016,
... Abstract Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers...
Abstract
View Papertitled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H Boiler Steel Tube
View
PDF
for content titled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H Boiler Steel Tube
Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers. Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress and strain will occur when the temperature changes. Therefore, the dissimilar welded parts require high durability against the repetition of the thermal stresses. SUPER304H (18Cr-9Ni-3Cu-Nb-N) is an austenitic stainless steel that recently has been used for boiler tubes in power plants. In this study, thermal fatigue properties of a dissimilar welded part of SUPER304H were investigated by conducting thermal fatigue tests and finite element analyses. The test sample was a dissimilar welded tube of SUPER304H and T91 (9Cr-1Mo-V-Nb), which is a typical ferritic heat resistant boiler steel.
1