Skip Nav Destination
Close Modal
Search Results for
high-temperature applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 525
Search Results for high-temperature applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1237-1249, October 21–24, 2019,
... applications have also continued. This paper summarises the latest developments in both of these material types. castings high temperature applications martensitic stainless steel nickel alloys Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24...
Abstract
View Papertitled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and Nickel Alloys for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
View
PDF
for content titled, The Status of Continued Development of Heavy Section Castings in 9%Cr Steels and Nickel Alloys for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
To meet worldwide emission targets many Government policies either avoid the use of coal burning plant for future energy production, or restrict emissions per kilogram of coal consumed beyond the capability of most conventional plant. As a result this has accelerated current worldwide developments of steel and nickel alloys for coal-fired plant to operate at temperatures in excess of 625°C. Within the UK a modified 9%Cr steel has been developed which is based on the MarBN steel first proposed by Professor Fujio Abe of NIMS Japan, and has been designated IBN-1. The steel is modified by additions of, typically, 3% cobalt and tungsten with controlled additions of boron and nitrogen. While development of 9%Cr steels has continued since the last EPRI high temperature material conference in 2016 (Portugal), parallel developments in nickel alloy castings for even higher temperature and pressure applications have also continued. This paper summarises the latest developments in both of these material types.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 195-206, February 25–28, 2025,
.... ceramic matrix composites creep resistance fiber-jacketed composite pipes high-temperature applications hollow cylinder specimens thermal power plants wall thickness Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference October 15...
Abstract
View Papertitled, Fiber-jacketed Creep Resistant Pipes for <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
View
PDF
for content titled, Fiber-jacketed Creep Resistant Pipes for <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
In order to enable safe long-term operation, metallic pipes operated in the creep range at high temperatures require considerable wall thicknesses at significant operating pressures, such as those required in thermal power plants of all kinds or in the chemical industry. This paper presents a concept that makes it possible to design such pipes with thinner wall thicknesses. This is achieved by adding a jacket made of a ceramic matrix composite material to the pipe. The high creep resistance of the jacket makes it possible to considerably extend the service life of thin- walled pipes in the creep range. This is demonstrated in the present paper using hollow cylinder specimens. These specimens are not only investigated experimentally but also numerically and are further analyzed after failure. The investigations of the specimen show that the modeling approaches taken are feasible to describe the long-term behavior of the specimen sufficiently. Furthermore, the paper also demonstrates the possibility of applying the concept to pipeline components of real size in a power plant and shows that the used modeling approaches are also feasible to describe their long-term behavior.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 592-599, February 25–28, 2025,
... Abstract The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable...
Abstract
View Papertitled, Innovative Design of Advanced Niobium-Based Alloys for Extreme <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
View
PDF
for content titled, Innovative Design of Advanced Niobium-Based Alloys for Extreme <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> <span class="search-highlight">Applications</span>
The aspiration to deploy Nb-based alloys as viable upgrade for Ni-based superalloys is rooted in their potential for superior performance in high-temperature applications, such as rocket nozzles and next-generation turbines. However, realizing this goal requires overcoming formidable design hurdles, including achieving high specific strength, creep resistance, fatigue, and oxidation resistance at elevated temperatures, while preserving ductility at lower temperatures. Additionally, the requisite for alloy bond-coatings, to ensure compatibility with coating materials, further complicates the design process. QuesTek Innovations has its Integrated Computational Materials Engineering (ICME) technologies to design a superior performance high-temperature Nb-based superalloy based on solid solution and precipitation strengthening. Additionally, utilizing a statistical learning method from very limited available data, QuesTek engineers were able to establish physics-based material property models, enabling accurate predictions of equilibrium phase fraction, DBTT, and creep properties for multicomponent Nb alloys. With the proven Materials by Design methodology under the ICME framework, QuesTek successfully designed a novel Nb superalloy that met the stringent design requirements using its advanced ICMD materials modeling and design platform.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 520-534, October 25–28, 2004,
... plants. forging high-temperature applications power generation plants pressure vessels reliability assessment steam turbine rotors turbine rotor shafts httpsdoi.org/10.31399/asm.cp.am-epri-2004p0520 Copyright © 2005 ASM International® 520 521 522 523 524 525 526 527 528 529 530 531 532 533...
Abstract
View Papertitled, Development of Steam Turbine Rotor Forging for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Application</span>
View
PDF
for content titled, Development of Steam Turbine Rotor Forging for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> <span class="search-highlight">Application</span>
Growing energy demand promotes the construction of high performance energy plants with large scale. A dramatic increase of plant performance has been achieved by the enlargement of their major components such as turbine rotor shafts and pressure vessels. The Japan Steel Works, Ltd., has been continuing the efforts for improvements of production technology, material technology, reliability assessments and so on in order to attain high performance, high efficiency and reliable plants. The efforts gave birth to several epoch-making large and high quality forged components for energy plants. Recently, on the viewpoint of environmental problem such as global climate change, further development of new production technology and improvement of material has been continued. This paper gives an overview of the development of large high-quality forgings for high efficiency power generation plants.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 762-772, October 25–28, 2004,
... Abstract High-temperature corrosion occurs in different sections of energy production plants due to a number of factors: ash deposition, coal impurities, thermal gradients, and low NO x conditions, among others. High-temperature electrochemical corrosion rate (ECR) probes are rarely used...
Abstract
View Papertitled, Electrochemical Corrosion Rate Probes for <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Energy <span class="search-highlight">Applications</span>
View
PDF
for content titled, Electrochemical Corrosion Rate Probes for <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Energy <span class="search-highlight">Applications</span>
High-temperature corrosion occurs in different sections of energy production plants due to a number of factors: ash deposition, coal impurities, thermal gradients, and low NO x conditions, among others. High-temperature electrochemical corrosion rate (ECR) probes are rarely used at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the effects of probe composition, ash composition, environment chemistry, and measurement technique on the accuracy, response, and longevity of electrochemical corrosion rate probes. The primary goal is to understand when ECR probes accurately measure corrosion rates and when they are simply qualitative indicators of changes in the corrosion processes. Research to date has shown that ECR probe corrosion rates and corrosion rates from mass loss coupons agree within a factor of 2. This good agreement was found to depend on the composition of the sensors, with the best results coming from more highly alloyed materials such as 316L stainless steel and poorer results from carbon steel sensors. Factors being considered to help explain the good or poor agreement between mass loss and ECR probe corrosion rates are: values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 424-435, October 22–25, 2013,
.... chemical segregation field emission gun scanning electron microscopy heat treatment high temperature degradation mechanical properties microstructure nickel-based superalloys power plant applications transmission electron microscopy Advances in Materials Technology for Fossil Power Plants...
Abstract
View Papertitled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant <span class="search-highlight">Applications</span> as a Consequence of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Degradation and Rejuvenation Heat Treatments
View
PDF
for content titled, Microstructural Evolution in a Ni- Based Superalloy for Power Plant <span class="search-highlight">Applications</span> as a Consequence of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Degradation and Rejuvenation Heat Treatments
The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime size and distribution and the degree of rafting has been examined in detail using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM) after high temperature degradation and rejuvenation heat treatments. The relationship between the microstructure, mechanical properties and the applied heat treatment procedures has been investigated. It is shown that there are significant differences in the rafting behaviour, the size of the ‘channels’ between the gamma prime particles, the degree of rafting and the size of the tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical segregation investigations were carried out to establish the cause of reduced mechanical properties of the rejuvenated sample after high temperature degradation compared to an as-received sample after the same degradation procedure. The results indicate that although the microstructure of as-received and rejuvenated samples were similar, the chemical segregation was more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements during rejuvenation was not completely eliminated. The aim of this research is to provide greater understanding of the suitability of rejuvenation heat treatments and their role in the extension of component life in power plant applications.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 900-915, August 31–September 3, 2010,
... alloy screening included tensile and creep-testing at 800°C to determine which alloys are best suited for the steam turbine casing application at 760°C. HR 282 has the best combination of high-temperature strength and ductility, making it a good candidate for the cast-casing application. Cast...
Abstract
View Papertitled, <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Mechanical Properties and Microstructure of Cast Ni-Based Superalloys for Steam Turbine Casing <span class="search-highlight">Applications</span>
View
PDF
for content titled, <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Mechanical Properties and Microstructure of Cast Ni-Based Superalloys for Steam Turbine Casing <span class="search-highlight">Applications</span>
Advanced UltraSupercritical (A-USC) Steam fossil power plants will operate at steam temperatures up to 760°C, which will require the use of Ni-based superalloys for steam boiler/superheater and turbine systems. In 2008, the Oak Ridge National Laboratory (ORNL) and the National Engineering Technology Laboratory/Albany (NETL/Albany) collaborated to make and test castings of Ni-based superalloys, which were previously only commercially available in wrought form. These cast Ni-based based alloys are envisioned for the steam turbine casing, but they may also be applicable to other large components that connect the steam supply to the steam turbine. ORNL and NETL/Albany have produced small vacuum castings of HR 282, Nimonic 105, Inconel 740, and alloy 263, which are precipitation-hardened Ni-based superalloys, as well as solid-solution superalloys such as alloys 625, 617 and 230. The initial alloy screening included tensile and creep-testing at 800°C to determine which alloys are best suited for the steam turbine casing application at 760°C. HR 282 has the best combination of high-temperature strength and ductility, making it a good candidate for the cast-casing application. Cast and wrought versions of HR 282 have similar creep-rupture strength, based on the limited data available to-date. Detailed comparisons to the other alloys and microstructures are included in this paper.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1020-1032, February 25–28, 2025,
... 2024 ASM International® All rights reserved. www.asminternational.org ASSESSMENT OF 316H STAINLESS STEEL PRODUCED BY DIRECTED ENERGY DEPOSITION ADDITIVE MANUFACTURING FOR HIGH TEMPERATURE POWER PLANT APPLICATIONS Ben Sutton, Eun Jang, Stephen Tate, John Shingledecker Electric Power Research Institute...
Abstract
View Papertitled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Power Plant <span class="search-highlight">Applications</span>
View
PDF
for content titled, Assessment of 316H Stainless Steel Produced by Directed Energy Deposition Additive Manufacturing for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Power Plant <span class="search-highlight">Applications</span>
This study evaluates the elevated temperature mechanical performance of 316H stainless steel produced using directed energy deposition (DED) additive manufacturing (AM) from three separate collaborative research programs focused on understanding how AM variables affect creep performance. By combining these studies, a critical assessment of variables was possible including the DED AM method (laser powder and gas metal arc wire), laser power, sample orientation relative to build orientation, chemical composition, and post-processing heat treatment. Detailed microstructure characterization was used to supplement creep and chemistry results to provide insights into potential mechanistic differences in behavior. The study found that sample orientation was a critical variable in determining lower-bound creep behavior, but that in general the lowest creep strength orientation and the lowest creep ductility orientation were not the same. Heat treatment was also an important variable with as-printed materials showing for specific test conditions improved performance and that underlying substructures formed due to inhomogeneous chemical distributions were not completely removed when using standard wrought solution annealing heat-treatments. The chemistry of the final deposited parts differed from the starting stock and may be an important consideration for long-term performance which is not fully appreciated. Overall, the study found that while all the DED materials tested fell within an expected wrought scatter band of performance, the actual creep performance could vary by an order of magnitude due to the many factors described.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1126-1137, February 25–28, 2025,
... NICKEL-BASED ALLOYS FOR HIGH TEMPERATURE MOLTEN CHLORIDE SALT REACTOR STRUCTURAL APPLICATIONS N. Naveen Kumar,1 Sonali Ravikumar,1 Boateng Twum Donkor,2 Jie Song,3 Vishal Soni,1 Abhishek Sharma,1 Sriswaroop Dasari,4 Gopal B. Viswanathan,5 Harjot Singh,6 Qinyun Chen,7 Rajarshi Banerjee,1 Matthew...
Abstract
View Papertitled, Investigation of Novel Nickel-Based Alloys for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Molten Chloride Salt Reactor Structural <span class="search-highlight">Applications</span>
View
PDF
for content titled, Investigation of Novel Nickel-Based Alloys for <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Molten Chloride Salt Reactor Structural <span class="search-highlight">Applications</span>
An attempt is being made to develop novel Ni-Mo-W-Cr-Al-X alloys with ICME approach with critical experimental/simulations and processing/microstructural characterization/property evaluation and performance testing has been adopted. In this work, based on thermodynamic modeling five alloy compositions with varying Mo/W and two alloys with high tungsten modified with the addition of Al or Ti were selected and prepared. The newly developed alloys were evaluated for their response to thermal aging in the temperature range of 700 to 850 °C and corrosion in the KCl-NaCl-MgCl 2 salt under suitable conditions. Thermally aged and post-corrosion test samples were characterized to ascertain phase transformations, microstructural changes and corrosion mechanisms. Al/Ti modified alloys showed significant change in hardness after 400 hours aging at 750°C, which was found to be due to the presence of fine γ’/γ” precipitates along with plate-shaped W/Mo-rich particles. These alloys show comparable molten salt corrosion resistance as commercial alloys at 750°C for 200-hour exposures. The good corrosion behavior of these alloys may be attributed to the formation of a protective multicomponent Al-or Ti-enriched oxide as well as the unique microstructure.
Proceedings Papers
The Development of Electric Power and High-Temperature Materials Application in China: An Overview
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 46-58, October 3–5, 2007,
... Power and High Temperature Materials Application in China An Overview Fusheng Lin Shanghai Power Equipment Research Institute, Shanghai 200240, China Shichang Cheng Central Iron and Steel Research Institute, Beijing, Beijing 100081, China Xishan Xie University of Science and Technology Beijing, Beijing...
Abstract
View Papertitled, The Development of Electric Power and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Materials <span class="search-highlight">Application</span> in China: An Overview
View
PDF
for content titled, The Development of Electric Power and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Materials <span class="search-highlight">Application</span> in China: An Overview
The rapid development of Chinese economy (recently in the order of 10%/year) is requiring sustainable growth of power generation to meet its demand. In more than half century after the foundation of People's Republic of China, the Chinese power industry has reached a high level. Up to now, the total installed capacity of electricity and annual overall electricity generation have both jumped to the 2 nd position in the world, just next to United States. A historical review and forecast of China electricity demand to the year of 2010 and 2020 will be introduced. Chinese power plants as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants with the steam temperature up to 600°C or higher will get a rapid development. The first two series of 2×1000MW USC power units with the steam parameters 600°C, 26.25MPa have been put into service in November and December 2006 respectively. In recent years more than 30 USC power units will be installed in China. USC power plant development will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing. Among those materials the modified 9- 12%Cr ferritic steels, Ni-Cr austenitic steels and a part of nickel-base superalloys have been paid special attention in Chinese materials market.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 208-219, October 3–5, 2007,
... Copyright © 2008 Electric Power Research Institute Distributed by ASM International®. All rights reserved. www.asminternational.org httpsdoi.org/10.31399/asm.cp.am-epri-2007p0208 VM12 A NEW 12%CR STEEL FOR APPLICATION AT HIGH TEMPERATURE IN ADVANCED POWER PLANTS - STATUS OF DEVELOPMENT - J. Gabrel...
Abstract
View Papertitled, VM12, a New 12%Cr Steel for <span class="search-highlight">Application</span> at <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> in Advanced Power Plants: Status of Development
View
PDF
for content titled, VM12, a New 12%Cr Steel for <span class="search-highlight">Application</span> at <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> in Advanced Power Plants: Status of Development
The T/P91 and T/P92 steel grades were developed as a result of a demand of high creep strength for advanced power plants. Nevertheless, their operating temperature range is limited by their oxidation performance which is lower compared with usual 12%Cr steels or austenitic steels. Moreover, the new designed power plants require higher pressure and temperature in order to improve efficiency and reduce harmful emissions. For these reasons, Vallourec and Mannesmann have recently developed a new 12%Cr steel which combines good creep resistance and high steam-side oxidation resistance. This new steel, with a chromium content of 12% and with other additional elements such as cobalt, tungsten and boron, is named VM12. Manufacturing of this grade has been successfully demonstrated by production of several laboratory and industrial heats and rolling of tubes and pipes in several sizes using different rolling processes. This paper summarizes the results of the investigations on base material, including creep tests and high temperature oxidation behavior, but also presents mechanical properties after welding, cold bending and hot induction bending.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 147-158, February 25–28, 2025,
..., USA httpsdoi.org/10.31399/asm.cp.am-epri-2024p0147 Copyright © 2024 ASM International® All rights reserved. www.asminternational.org CREEP RESISTANT MARTENSITIC STEELS FOR OPERATION AT HIGH-TEMPERATURES IN POWER GENERATION APPLICATIONS Martin Detrois1, Chang-Yu Hung1,2, Stoichko Antonov1, Paul D...
Abstract
View Papertitled, Creep Resistant Martensitic Steels for Operation at <span class="search-highlight">High</span>-<span class="search-highlight">Temperatures</span> in Power Generation <span class="search-highlight">Applications</span>
View
PDF
for content titled, Creep Resistant Martensitic Steels for Operation at <span class="search-highlight">High</span>-<span class="search-highlight">Temperatures</span> in Power Generation <span class="search-highlight">Applications</span>
Increasing the temperature capabilities of ferritic/martensitic 9-12% Cr steels can help in increasing the operating temperature of land-based turbines and minimize the use of expensive high-temperature alloys in the hot section. A creep resistant martensitic steel, JMP, was developed with the potential to operate at or above 650°C. The design of the alloys originated from computational modeling for phase stability and precipitate strengthening using fifteen constituent elements. Cobalt was used for increased solid solution strengthening, Si for oxidation resistance and different W and Mo concentrations for matrix strength and stability. The JMP steels showed increases in creep life compared to MARBN/SAVE12AD at 650°C for testing at various stresses between 138 MPa and 207 MPa. On a Larson-Miller plot, the performance of the JMP steels surpasses that of state-of-the-art MARBN steel. Approximately 21 years of cumulative creep data are reported for the JMP steels which encompasses various compositions. The relationships between composition-microstructure-creep properties are discussed including characterization of microstructures after >20,000 hours in creep.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 861-872, February 25–28, 2025,
... Abstract The advancement of additive manufacturing (AM) technology has heightened interest in producing components from nickel-based superalloys for high-temperature applications; however, developing high gamma prime (γ’) strengthened alloys suitable for AM at temperatures of 1000°C or higher...
Abstract
View Papertitled, ABD-1000AM: a Highly Processible Superalloy for Additive Manufacturing, Computationally Designed for 1000°C <span class="search-highlight">Applications</span>
View
PDF
for content titled, ABD-1000AM: a Highly Processible Superalloy for Additive Manufacturing, Computationally Designed for 1000°C <span class="search-highlight">Applications</span>
The advancement of additive manufacturing (AM) technology has heightened interest in producing components from nickel-based superalloys for high-temperature applications; however, developing high gamma prime (γ’) strengthened alloys suitable for AM at temperatures of 1000°C or higher poses significant challenges due to their “non-weldable” nature. Traditional compositions intended for casting or wrought processes are often unsuitable for AM due to their rapid heating and cooling cycles, leading to performance compromises. This study introduces ABD-1000AM, a novel high gamma prime Ni-based superalloy designed using the Alloys-by-Design computational approach to excel in AM applications at elevated temperatures. Tailored for AM, particularly powder bed fusion, ABD-1000AM demonstrates exceptional processing capability and high-temperature mechanical and environmental performance at 1000°C. The study discusses the alloy design approach, highlighting the optimization of key performance parameters, composition, and process-microstructure-performance relationships to achieve ABD-1000AM’s unique combination of processability and creep resistance. Insights from ABD-1000AM’s development inform future directions for superalloy development in complex AM components.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 353-365, October 3–5, 2007,
... currently undergoing extensive testing to validate their performance and potential for advanced high-temperature applications. boron content chromium steel creep resistance gas turbines rotor forgings steam turbines turbine shafts Advances in Materials Technology for Fossil Power Plants...
Abstract
View Papertitled, <span class="search-highlight">High</span> Chromium Steel Forgings for Steam Turbines at Elevated <span class="search-highlight">Temperatures</span>
View
PDF
for content titled, <span class="search-highlight">High</span> Chromium Steel Forgings for Steam Turbines at Elevated <span class="search-highlight">Temperatures</span>
The global transition toward high-efficiency steam power plants demands increasingly advanced steel rotor forgings capable of operating at temperatures of 600°C and above. The European Cost program has been instrumental in developing creep-resistant 10%-chromium steels for these critical applications, with Steel Cost E emerging as a prominent material now widely utilized in steam turbine shafts and experiencing significant market growth. Saarschmiede has pioneered a robust, fail-safe manufacturing procedure for Cost E rotors, establishing a comprehensive database of mechanical properties and long-term performance data that enhances turbine design reliability. The company has expanded its manufacturing capabilities to include Cost F rotor forgings for high-pressure and intermediate-pressure turbines, with component weights reaching up to 44 tonnes. Investigating methods to further increase application temperatures, researchers within the Cost program discovered the potential benefits of boron additions to 10%-chromium steels. Leveraging this insight, Saarschmiede has produced full-size trial rotors to develop and refine production procedures, with these prototype components currently undergoing extensive testing to validate their performance and potential for advanced high-temperature applications.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 338-352, October 3–5, 2007,
..., offering greater thermal flexibility at lower component costs and facilitating welded turbine rotors for high-temperature applications without requiring cooling in the steam inlet region. Looking forward, further efficiency improvements are anticipated through the introduction of nickel alloys in steam...
Abstract
View Papertitled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
View
PDF
for content titled, Material Development and Mechanical Integrity Analysis for Advanced Steam Turbines
Development activities initiated over a decade ago within the COST 522 program and continuing through the COST 536 Action have yielded significant progress in constructing a new generation of steam power plants capable of operating under advanced steam conditions. These innovative plants promise substantially improved thermal efficiency, with steam temperatures reaching up to 620°C (1150°F). Recent successful power plant orders in Europe and the United States stem from critical advancements, including the development, testing, and qualification of 10% Cr steels with enhanced long-term creep properties for high-temperature components such as turbine rotors and valve casings. Extensive in-house development efforts have focused on fabrication, weldability, mechanical integrity, and fracture mechanics evaluations of full-sized forged and cast components. These materials will be implemented in several new coal-fired power plants, notably the Hempstead plant in the USA, which will operate with live steam temperatures of 599°C (1111°F) and reheat steam temperatures of 607°C (1125°F). The improved creep properties enable the construction of casings with reduced wall thicknesses, offering greater thermal flexibility at lower component costs and facilitating welded turbine rotors for high-temperature applications without requiring cooling in the steam inlet region. Looking forward, further efficiency improvements are anticipated through the introduction of nickel alloys in steam turbine and boiler components, with the European AD700 project targeting reheat steam temperatures of 720°C (1328°F) and the US Department of Energy project aiming even higher at 760°C (1400°F). The AD700 project has already demonstrated the technical feasibility of such advanced steam power plants, with engineering tasks progressing toward the construction of a 550 MW demonstration plant, while DOE activities continue to address boiler concerns and focus on rotor welding, mechanical integrity, and steam oxidation resistance.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 855-871, October 25–28, 2004,
... into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications. austenitic stainless steel filler metals dissimilar metal welding ferritic steel high temperature applications microfissuring nickel-based filler metal...
Abstract
View Papertitled, Alternative Filler Materials for Dissimilar Metal Welds Involving P91 Materials
View
PDF
for content titled, Alternative Filler Materials for Dissimilar Metal Welds Involving P91 Materials
In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI found that nickel-based filler metals provided significant service life improvements over 309 stainless steel filler metals. Improved joint geometries and additional weld metal reinforcement were determined to extend service life further. A new nickel-based filler metal was also developed, exhibiting thermal expansion properties similar to the low-alloy base metal and a low chromium content that would result in a smaller carbon-depleted zone than currently available fillers. However, this new filler metal was never commercialized due to a tendency for microfissuring, resulting in less than desired service life. This paper discusses further investigation into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 90-100, October 11–14, 2016,
... and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture...
Abstract
View Papertitled, Material and Design Aspects for Modern Steam Power Plants
View
PDF
for content titled, Material and Design Aspects for Modern Steam Power Plants
There are main drivers for the design and assessment of steam turbine components of today such as demands for improved materials, higher plant cycling operation, and reduced life-cycle costs. New materials have been developed over the last decades resulting in advanced martensitic 9-10CrMoV steels already applied in different types of turbines successfully. Heavy cyclic loading getting more importance than in the past results in utilization of the fatigue capabilities at high and low temperatures which might lead to crack initiation and subsequent crack propagation. Fracture mechanics methods and evaluation concepts have demonstrated their applicability to assess the integrity of components with defects or crack-like outage findings. Based on realistic modelling of the failure mechanism, accurate prediction of crack sizes at failure state can be improved defining the appropriate damage criteria. Ductility is a main aspect for robust design but its value definition can depend on component type, design rules, real loading conditions, service experience, and material characteristics. The question which direct material parameter is able to serve as limit value in design and how it can be determined has to be solved. Examples of advanced analysis methods for creep crack growth and fatigue interaction involving the crack initiation time show that the reserves of new martensitic 9-10Cr steels in high temperature application can be well quantified. The creep rupture elongation A u and the loading conditions in the crack far field are main factors. If the A u value is sufficient high also after long-time service, the material remains robust against cracks. Investigations into the influence of stress gradients on life time under fatigue and creep fatigue conditions show that e.g. for 10CrMoWV rotor steel crack growth involvement offers further reserves. The consideration of constraint effect in fracture mechanics applied to suitable materials allows for further potentials to utilize margin resulting from classical design. The new gained knowledge enables a more precise determination of component life time via an adapted material exploitation and close interaction with advanced design rules.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 274-290, October 25–28, 2004,
... strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status...
Abstract
View Papertitled, Sandvik Sanicro 25, A New Material for Ultrasupercritical Coal Fired Boilers
View
PDF
for content titled, Sandvik Sanicro 25, A New Material for Ultrasupercritical Coal Fired Boilers
The power generation industry worldwide aims to develop coal-fired boilers operating at much higher efficiencies than current supercritical plants. This increased efficiency is expected through ultrasupercritical steam conditions, requiring new materials for critical components. To limit the use of expensive alloying materials, it is necessary to maximize the strength and corrosion capabilities across the material spectrum from ferritic to austenitic and nickel-based alloys. Sandvik Materials Technology has developed an austenitic alloy, Sanicro 25, with excellent high-temperature strength and corrosion resistance using an economical alloy composition. The alloy is designed for use within 700°C (1300°F)/300 bar (4500 psi) steam conditions and is a leading candidate material for such high-temperature applications. This paper introduces Sanicro 25, its development status, and properties.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 523-534, October 21–24, 2019,
... on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions. advanced ultra-supercritical steam aging coal-fired power plants deformation Haynes...
Abstract
View Papertitled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Properties
View
PDF
for content titled, An Economical 1-Step Aging Treatment for Haynes 282 Superalloy—Effects on Microstructure and <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Properties
Haynes 282 is a great candidate to meet advanced ultra-super-critical (A-USC) steam conditions in modern coal-fired power plants. The standard 2-step aging treatment has been designed for optimizing microstructure therefore providing excellent mechanical properties. We studied an alternative, more economical, 1-step aging treatment and compared microstructure, tensile properties at 750˚C and deformation behavior. Moreover, three cooling rates from the solution temperature were studied to simulate large-scale components conditions. We found that as much as about 20% of fine spherical intragranular γ' particles were successfully precipitated in all cases. Their average size increased as the cooling rate decreased. All four heat-treated alloys exhibited good mechanical properties at 750˚C with a yield strength well over 620MPa. As expected, the yield strength increased and the ductility decreased as the average γ' size decreased. The alloys exhibited a mixed mode of deformation, though the dominant deformation mechanism depended on the different γ' characteristics. The major operative deformation mechanism could be well predicted by strength increment calculations based on the precipitation strengthening model. Our results suggest that wrought Haynes 282 produced by a more economical 1-step aging treatment may be a reliable candidate for high temperature applications under A-USC conditions.
Proceedings Papers
High-Temperature Low Cycle Fatigue and Creep-Fatigue Behavior of a Modified 9Cr-1Mo Ferritic Steel
Free
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1227-1228, October 25–28, 2004,
... Abstract This paper explores the low cycle fatigue (LCF) and creep-fatigue properties of a hot-forged, normalized, and tempered 9Cr-1Mo ferritic steel. This steel offers good performance in high-temperature applications (up to 873K) in power plants and reactors. The steel was forged into 70 mm...
Abstract
View Papertitled, <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Low Cycle Fatigue and Creep-Fatigue Behavior of a Modified 9Cr-1Mo Ferritic Steel
View
PDF
for content titled, <span class="search-highlight">High</span>-<span class="search-highlight">Temperature</span> Low Cycle Fatigue and Creep-Fatigue Behavior of a Modified 9Cr-1Mo Ferritic Steel
This paper explores the low cycle fatigue (LCF) and creep-fatigue properties of a hot-forged, normalized, and tempered 9Cr-1Mo ferritic steel. This steel offers good performance in high-temperature applications (up to 873K) in power plants and reactors. The steel was forged into 70 mm diameter rods and then heat-treated with normalizing (1313K for 1 hour, air cooling) and tempering (1033K for 1 hour, air cooling). LCF tests were conducted at 300-873K with varying strain amplitudes and strain rates to understand the influence of both factors. Additionally, some specimens were aged at different temperatures for 10,000 hours before testing. Finally, creep-fatigue interaction tests were performed at 823K and 873K using tensile hold times ranging from 1 to 30 minutes.
1