Skip Nav Destination
Close Modal
Search Results for
high temperature-serviced steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 360
Search Results for high temperature-serviced steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 137-148, October 11–14, 2016,
.... In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys...
Abstract
View Papertitled, Creep Degradation Assessment of Ni-Based Alloys by Hardness Method
View
PDF
for content titled, Creep Degradation Assessment of Ni-Based Alloys by Hardness Method
The creep degradation/life assessment for high temperature critical component materials is absolutely needed to assure the long-term service operation and there is little experience with the service exposure of the high temperature components made of newly developed Ni-based alloys. In this study, therefore, the creep degradation assessment study on the Ni-based alloys, Alloy 617 and HR6W was conducted based on the hardness method, because the hardness measurement is a useful and simple technique for the materials characterization for any kind of high temperature-serviced steels and alloys. As the result, it was found that the hardness was increased by not only precipitation due to thermal aging but also creep stress/strain, and there existed linear relationship between the applied stress and creep-induced hardness increase. Also the hardness scatter measured was increased along with the progress of creep hardening and damage progressing in terms of creep life consumed. Those findings suggested that the creep life assessment of Ni-based alloys would be possible by means of hardness measurement. The paper also deals with the role and perspective development of non destructive damage detecting techniques, and life assessment issues on Ni-based alloys for A-USC power applications.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 388-399, October 11–14, 2016,
... Abstract The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test...
Abstract
View Papertitled, Research on Magnetic Behavior of Austenitic Heat-Resistant <span class="search-highlight">Steel</span> Boiler Tubes After <span class="search-highlight">Service</span>
View
PDF
for content titled, Research on Magnetic Behavior of Austenitic Heat-Resistant <span class="search-highlight">Steel</span> Boiler Tubes After <span class="search-highlight">Service</span>
The delivery state of austenitic heat resistant steel boiler tubes is paramagnetic, such as TP304H, TP347H and S30432, the material state, however, appears obviously magnetic after long-time high-temperature service. Vibrating Sample Magnetometer (VSM) has been employed to test the magnetism difference after high-temperature service, and XRD, SEM, TEM, SAED and EDS has been adopted to observe and analyze their microstructure, phase structure and composition. The research results show that compared with the delivery state, the lath α´-Martensite and sometimes the lamellar ε-Martensite will occur in areas adjacent to grain boundaries due to martensite transformation in the microstructure of austenitic heat resistant steel boiler tube after high temperature service. There are high density dislocations tangled together in the substructure of α´-Martensite, and lamellar stacking faults arrayed orderly by a large number of dislocations in the substructure of ε-Martensite. The magnetism of α´-Martensite, its internal stress and carbides is the reason why the austenitic heat resistant steel boiler tubes appear obviously magnetic after high temperature service, and the α´-Martensite plays a major role.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
... evolution law of the new type of heat-resistant steel tube in service was revealed based on simulation calculation phase diagram prediction and experiments, and the high-temperature tensile or permanent/creep property tests were completed through self-defined test specifications. For tube samples after...
Abstract
View Papertitled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
View
PDF
for content titled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 351-359, October 22–25, 2013,
... Abstract This paper presents the creep and creep-fatigue crack growth behaviors of 30Cr1Mo1V turbine rotor steel which had been in service for 16 years. Two typical sections of the rotor, i.e. high and low temperature sections, are examined at 538°C, with crack initiation and propagation...
Abstract
View Papertitled, Creep and Creep-Fatigue Crack Growth Behaviors of 30Cr1Mo1V Rotor <span class="search-highlight">Steel</span> after Long Term <span class="search-highlight">Service</span>
View
PDF
for content titled, Creep and Creep-Fatigue Crack Growth Behaviors of 30Cr1Mo1V Rotor <span class="search-highlight">Steel</span> after Long Term <span class="search-highlight">Service</span>
This paper presents the creep and creep-fatigue crack growth behaviors of 30Cr1Mo1V turbine rotor steel which had been in service for 16 years. Two typical sections of the rotor, i.e. high and low temperature sections, are examined at 538°C, with crack initiation and propagation monitored by D.C. potential drop method in a compact tension (CT) specimen. The material of the high temperature section has the lower resistance to creep and creep-fatigue crack growths than the low temperature section. The creep crack initiation (CCI) time decreases with the increase of initial stress intensity factor. The creep-fatigue crack growth (CFCG) is dominated by the cycle-dependent fatigue process when the hold time at the maximum load is shorter, but it becomes dominated by the time-dependent creep process when the hold time becomes longer. The high temperature section shows a larger influence of time-dependent creep behavior on CFCG than the low temperature section.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 809-817, October 3–5, 2007,
... offers solutions to both high and low temperature pressure service condition problems associated with austenitic stainless steel. This weld filler metal is identified by its major alloying elements 16-8-2 [nominally, 16% chromium (Cr)-8% nickel (Ni)-2% molybdenum (Mo This alloy was originally developed...
Abstract
View Papertitled, 16-8-2 and Other Weld Metal Compositions that Utilize Controlled Residual Elements to Enhance and Maintain Elevated <span class="search-highlight">Temperature</span> Creep Strength
View
PDF
for content titled, 16-8-2 and Other Weld Metal Compositions that Utilize Controlled Residual Elements to Enhance and Maintain Elevated <span class="search-highlight">Temperature</span> Creep Strength
Achieving high temperature creep strength while maintaining rupture ductility in weld metal for austenitic stainless steel weldments has always been challenging. In the late 1940's and early 1950's, independent work in both Europe and the USA resulting in what is known today as the 16-8-2 (nominally16% chromium -8% nickel -2% molybdenum) stainless steel weld metal. Philo 6 and shortly thereafter at Eddystone used the alloy to construct the first supercritical boilers and piping in the USA. Concurrent with domestic boiler and piping fabrication, the US Navy was also using this material for similar supercritical applications. Over the decades, enhanced performance has evolved with variations of the basic composition and by adding specific residual elements. Controlled additions of P, B, V, Nb and Ti have been found to greatly enhance elevated temperature as well as cryogenic behavior. The history of these developments, example compositions and areas of use as well as mechanical property results are presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 265-272, October 21–24, 2019,
... quantities and seriously coarsen under a long time aging treatment (about 1 year)[4], which results in the great weakening of high temperature mechanical properties. Currently, it is still lack of the investigation on the evolution of mechanical properties and microstructures of T122 steel after a long-term...
Abstract
View Papertitled, Microstructural Evolution and Mechanical Properties of T122 <span class="search-highlight">Steel</span> Tube in a 1000MW Ultra Supercritical Unit after Long-Term <span class="search-highlight">Service</span>
View
PDF
for content titled, Microstructural Evolution and Mechanical Properties of T122 <span class="search-highlight">Steel</span> Tube in a 1000MW Ultra Supercritical Unit after Long-Term <span class="search-highlight">Service</span>
The microstructures and mechanical properties of T122 steel used for superheater tube of the boiler in a 1000 MW ultra supercritical power plant after service for 83,000h at 590℃ were investigated, and compared with data of that served for 56,000h in previous studies. The results show that compared with T122 tube sample service for 56,000h, the tensile properties at room temperature and the size of precipitated phase exhibit few differences, but the lath martensites features are apparent, and the Brinell hardness value are obviously higher. SEM and TEM experiments show that the substructure is still dominated by lath martensite. A few lath martensites recover, subgrains appear and equiaxe, and the dislocation density in grains is relatively low. A large number of second-phase particles precipitated at boundaries of original austenite grains and lath martensite phases, which are mainly M 23 C 6 and Laves phases.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1441-1452, October 22–25, 2013,
... temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up...
Abstract
View Papertitled, A Computational Design Study of Novel Creep Resistant <span class="search-highlight">Steels</span> for Fossil Fuel Power
View
PDF
for content titled, A Computational Design Study of Novel Creep Resistant <span class="search-highlight">Steels</span> for Fossil Fuel Power
This work concerns a study into the design of creep resistant precipitation hardened austenitic steels for fossil fuel power plants using an integrated thermodynamics based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behavior of commercial austenitic creep resistant steels rather accurately. Using the alloy optimization scheme three new steel compositions are presented yielding optimal creep strength for various intended service times up to 105 hours. According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate strengthened austenitic creep resistant steels.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 715-731, August 31–September 3, 2010,
..., heat-affected zones (HAZ) in welds are emerging as primary locations for service failures. This complexity emphasizes the need for comprehensive evaluation criteria incorporating stress, temperature, and material properties when assessing component serviceability. chromium-molybdenum alloy steel...
Abstract
View Papertitled, Key Life Management Issues with Grade 91 <span class="search-highlight">Steel</span>
View
PDF
for content titled, Key Life Management Issues with Grade 91 <span class="search-highlight">Steel</span>
Recent evidence suggests that using hardness as the sole acceptance criterion for Grade 91 steels is inadequate for predicting service performance. Components can achieve acceptable initial hardness values through heat treatment despite suboptimal elemental composition, leading to poor tempering resistance and unexpectedly low creep strength during service. Paradoxically, some components with lower initial hardness may perform better due to slower degradation rates. While the relationship between parent material properties and Type IV cracking susceptibility remains under investigation, heat-affected zones (HAZ) in welds are emerging as primary locations for service failures. This complexity emphasizes the need for comprehensive evaluation criteria incorporating stress, temperature, and material properties when assessing component serviceability.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1159-1168, October 21–24, 2019,
... stainless steel mechanical properties microstructural evolution Joint EPRI 123HiMAT International Conference on Advances in High Temperature Materials October 21 24, 2019, Nagasaki, Japan J. Shingledecker, M. Takeyama, editors httpsdoi.org/10.31399/asm.cp.am-epri-2019p1159 Copyright © 2019 ASM...
Abstract
View Papertitled, Microstructural Evolution and <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Failure of T91/TP347H Dissimilar Welds Used in China Plants
View
PDF
for content titled, Microstructural Evolution and <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Failure of T91/TP347H Dissimilar Welds Used in China Plants
Dissimilar metal welds between T91 ferritic steels and TP347H austenitic alloys are commonly used in fossil power plants in China. Premature failure of such dissimilar welds can occur, resulting in unplanned plant outages that can cause huge economic losses. In this article, microstructural evolution of T91/TP347H dissimilar welds after different service conditions were studied, mechanical properties before and after service were also analyzed, a full investigation into the failure cause was carried out. The results show, the dissimilar metal welds in the as-welded condition consists of a sharp chemical concentration gradient across the fusion line, failure is attributed to the steep microstructural and mechanical properties gradients, formation of interfacial carbides that promote creep cavity formation.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 30-52, August 31–September 3, 2010,
... at grain boundaries as indicated in Fig. 2a. During long time service at high temperature till 111,500 hrs bainite is further decomposed and complementary carbide precipitation happens in -matrix and at grain boundaries also (see Fig. 2b, c and d). 35 Carbide fraction in steel Figure 2. Structure changes...
Abstract
View Papertitled, Results from Structural Stability Studies of Advanced Heat-Resistant <span class="search-highlight">Steels</span> and Alloys for Fossil Power Plants in China
View
PDF
for content titled, Results from Structural Stability Studies of Advanced Heat-Resistant <span class="search-highlight">Steels</span> and Alloys for Fossil Power Plants in China
This overview paper summarizes part of structure stability study results in China on advanced heat-resistant steels, nickel-iron and nickel base superalloys such as 12Cr2MoWVTiB(GY102) ferritic steel, Super 304H austenitic steel, GH2984, Nimonic 80A and INCONEL 740 superalloys for fossil power plant application. China had established first USC power plant with steam parameters of 650°C and 25 MPa in the year of 2006. Austenitic heat-resistant steel Super 304H is mainly used as boiler superheater and reheater material. Ni-Cr-Fe base superalloy GH2984 was used as tube material for marine power application. Ni-Cr-Co type INCONEL 740 has been studied in a joint project with Special Metals Corp., USA for European USC model power plant with the steam temperature of 700°C. Nimonic 80A has been used as several stage USC steam turbine bucket material at 600°C in China. Structure stability study of Nimonic 80A shows its possibility of 700°C application for USC steam turbine buckets.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 88-98, February 25–28, 2025,
... MATERIAL AND WELD REPAIR OPTIONS Many casings, steam chests and valves for high temperature service are fabricated (cast) from 1Cr-1Mo-0.25V steel, commonly abbreviated as 1CrMoV, to ASTM A356 Grade 9 [3] (or equivalent based on steam turbine OEM specifications). This is a creep strength enhanced ferritic...
Abstract
View Papertitled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
View
PDF
for content titled, Damage and Cracking in 1CrMoV Casings: Why and How to Repair?
Thick-walled valves, steam chests, and casings suffer service damage from thermal stresses due to the significant through-thickness temperature gradients that occur during operating transients. Fatigue is the primary damage mechanism, but recent examination of turbine casings has revealed extensive sub-surface creep cavitation. The low primary stress levels for these components are unlikely to cause creep damage, so detailed inelastic analysis was performed to understand the complex stress state that evolves in these components. This illustrates that fatigue cycles can cause elevated stresses during steady operation that cause creep damage. This paper will explore a case study for a 1CrMoV turbine casing where the stress-strain history during operating transients will be related to damage in samples from the turbine casing. This will also highlight how service affects the mechanical properties of 1CrMoV, highlighting the need for service- exposed property data to perform mechanical integrity assessments. Finally, the consequences for repair of damage will be discussed, illustrating how analysis can guide volume of material for excavation and selection of weld filler metal to maximize the life of the repair. This, in turn, will identify opportunities for future weld repair research and material property data development.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... Abstract A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent...
Abstract
View Papertitled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 <span class="search-highlight">Steel</span>
View
PDF
for content titled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 <span class="search-highlight">Steel</span>
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 855-871, October 25–28, 2004,
... into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications. austenitic stainless steel filler metals dissimilar metal welding ferritic steel high temperature applications microfissuring nickel-based filler metal...
Abstract
View Papertitled, Alternative Filler Materials for Dissimilar Metal Welds Involving P91 Materials
View
PDF
for content titled, Alternative Filler Materials for Dissimilar Metal Welds Involving P91 Materials
In the late 1980s, the domestic utility industry experienced failures in dissimilar metal welds (DMWs) between low-alloy ferritic tubing and austenitic tubing in superheaters and reheaters. Extensive research by EPRI found that nickel-based filler metals provided significant service life improvements over 309 stainless steel filler metals. Improved joint geometries and additional weld metal reinforcement were determined to extend service life further. A new nickel-based filler metal was also developed, exhibiting thermal expansion properties similar to the low-alloy base metal and a low chromium content that would result in a smaller carbon-depleted zone than currently available fillers. However, this new filler metal was never commercialized due to a tendency for microfissuring, resulting in less than desired service life. This paper discusses further investigation into the filler metal microfissuring issue and examines long-term testing to determine the filler's suitability for high-temperature applications.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 344-350, October 22–25, 2013,
... understanding of the material behavior under service conditions. Service conditions of turbine blades are cyclic loading at high temperatures under superheated steam conditions and complex mechanical loading. There are not commercially available testing systems providing such functionality and thus the system...
Abstract
View Papertitled, <span class="search-highlight">High</span> Cycle Fatigue Properties of Steam Turbine Materials at <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Under Superheated Steam Conditions
View
PDF
for content titled, <span class="search-highlight">High</span> Cycle Fatigue Properties of Steam Turbine Materials at <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Under Superheated Steam Conditions
Increasing demand for reliable design of all kinds of structures requires materials properties evaluated under the conditions as close to real service conditions as possible. Presently resolved project dealing with development of new turbine blades geometry requires better understanding of the material behavior under service conditions. Service conditions of turbine blades are cyclic loading at high temperatures under superheated steam conditions and complex mechanical loading. There are not commercially available testing systems providing such functionality and thus the system allowing samples testing under considered conditions was developed. The system allows cyclic loading at temperatures up to 650°C under superheated steam conditions. Typical blade steel is investigated here and experimental approach considering complex mechanical loading as well as thermal and corrosion is shown here. The results of high cycle fatigue tests in superheated steam corrosive environment are shown here.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 571-583, August 31–September 3, 2010,
...) and beyond. These temperatures are outside of the effective operating range for conventional ferritic and austenitic steel alloys, necessitating the need for nickel based alloys, for which experience is very limited for the thick section size and long service lives required. The current main candidate nickel...
Abstract
View Papertitled, The Effect of <span class="search-highlight">Service</span> Aging on the Creep-Fatigue Properties of Alloy 617 Parent Metal and Welds
View
PDF
for content titled, The Effect of <span class="search-highlight">Service</span> Aging on the Creep-Fatigue Properties of Alloy 617 Parent Metal and Welds
To enhance power plant efficiency, global projects aim to increase operating temperatures to 700 °C (1292 °F) and beyond, surpassing the capabilities of conventional ferritic and austenitic steel alloys and necessitating the use of nickel-based alloys like Alloy 617. This study evaluated the fatigue and creep-fatigue performance of Alloy 617, including both parent metal and welds, at 650 °C (1202 °F). Tests were conducted on virgin material, service-aged samples (up to 25,000 hours), and material over-aged at 800 °C (1472 °F) for 1,000 hours. Results indicated that service aging only slightly reduced the pure fatigue properties of Alloy 617, but significantly decreased its life under creep-fatigue conditions. The creep-fatigue life of ex-service welds was reduced to less than one-third of that of virgin parent metal. The data suggests that the introduction of a tensile hold period impacts Alloy 617's life more than Alloy 263 but less than Alloy 740, potentially linked to the cyclic strength of the alloys. The reduction in life for Alloy 617 is notably greater than that observed in conventional ferritic alloys.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 973-981, October 22–25, 2013,
... Abstract Qualifying welding procedures for repair of components in high temperature service requires careful consideration of factors including identification of the materials involved, existing mechanical properties and service operating parameters such as temperature, pressure and environment...
Abstract
View Papertitled, Qualifying Welding Procedures for Repair of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Components
View
PDF
for content titled, Qualifying Welding Procedures for Repair of <span class="search-highlight">High</span> <span class="search-highlight">Temperature</span> Components
Qualifying welding procedures for repair of components in high temperature service requires careful consideration of factors including identification of the materials involved, existing mechanical properties and service operating parameters such as temperature, pressure and environment. Selection of weld metals to match, under match or overmatch base material as well as direct and indirect consequences on the heat-affected zone also require evaluation. Application of post weld heat treatment and ramifications where dissimilar base materials are involved are discussed plus the necessity of conducting tests at the operating temperatures and conditions where information is not available from the literature. Each of these factors is discussed and examples provided.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1098-1108, October 21–24, 2019,
... will decrease the strength, creep limit and endurance strength of steel, which is unfavorable to the safe operation of high-temperature pipelines. Figure 7. SEM and EDS analysis (a) Carbon distribution (b) Chromium distribution Comparison of micro-hardness between different test paths of ex-service 2.25Cr1Mo...
Abstract
View Papertitled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term <span class="search-highlight">Service</span>
View
PDF
for content titled, Microstructure Characterization of a 2.25Cr-1Mo Main Steam Pipe Weldment after Long-Term <span class="search-highlight">Service</span>
Metallographic tests, micro-hardness tests, mechanics performance tests and Energy Dispersion Spectrum (EDS) were conducted for a 2.25Cr-1Mo main steam pipe weldment served for more than 32 years. Microstructural evolution of the 2.25Cr-1Mo base metal and weld metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates occurred after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM>HAZ>BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 703-714, October 21–24, 2019,
... of austenitic stainless steels, however this comes with a ductility loss after long term aging at service 703 temperature [3]. The final element that is added to form Super 304H is up to 3.5 wt.% of Cu. It has been shown that the addition of Cu increases the high temperature, (923K - 1023K/ 650°C 750°C...
Abstract
View Papertitled, Characterization of the Microstructural Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless <span class="search-highlight">Steel</span>
View
PDF
for content titled, Characterization of the Microstructural Evolution of Aged Super 304H (UNS S30432) Advanced Austenitic Stainless <span class="search-highlight">Steel</span>
Advanced austenitic stainless steels, such as Super 304H, have been used in reheater and superheater tubes in supercritical and ultra-supercritical power plants for many years now. It is important to characterize the microstructure of ex-service reheater and superheater tubes as this will help researchers understand the long-term microstructural evolution and degradation of the material, which can impact the performance and lifetime of the components that are in service. In this research, the microstructure of an ex-service Super 304H reheater tube that has been in service for 99,000 hours at an approximate metal temperature of 873K (600°C) has been characterized. The characterization techniques used were electron microscopy-based and included imaging and chemical analysis techniques. Seven phases were observed as a result of the characterization work. The phases observed were MX carbonitrides rich in niobium, copper-rich particles, M 23 C 6 , sigma phase, Z phase, a cored phase, and a BCC phase.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 635-649, February 25–28, 2025,
... for this mainstay advanced stainless steel. INTRODUCTION The alloy Super 304H (UNS S30432/ DIN 1.4907/ EN X10CrNiCuNb18-9-3) is an advanced austenitic stainless steel developed for higher temperature corrosion and oxidation resistance and improved high temperature creep strength compared to traditional austenitic...
Abstract
View Papertitled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term <span class="search-highlight">Service</span> Aged Components
View
PDF
for content titled, Understanding the Kinetics of Sigma Phase Evolution in Super 304H using Lab Creep Tested Heats and Long-term <span class="search-highlight">Service</span> Aged Components
Super 304H is a new generation of advanced austenitic stainless steels that is increasingly being used in superheater/ reheater (SH/RH) sections of thermal ultra-supercritical steam power plants due to its high creep strength combined with good oxidation resistance and microstructure stability. However, recent studies have shown significant microstructural changes and associated degradation in creep performance during long-term service exposure in this alloy. Microstructure evolution during service and its effect on the long-term creep performance has not been comprehensively assessed. In this work, variations in the microstructure of long-term service exposed Super 304H RH tubes (~99,600 hours at 596°C steam temperature) are documented. The results for the ex-service material are compared to well-documented laboratory studies to provide perspective on improved life management practices for this mainstay advanced stainless steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 273-281, October 21–24, 2019,
... by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage...
Abstract
View Papertitled, Creep-Fatigue Interactions in 9CR Martensitic Cast <span class="search-highlight">Steel</span>—Microstructure and Mechanical Behavior
View
PDF
for content titled, Creep-Fatigue Interactions in 9CR Martensitic Cast <span class="search-highlight">Steel</span>—Microstructure and Mechanical Behavior
This study presents a characterization of the microstructural evolutions taking place in a 9%Cr martensitic cast steel subjected to fatigue and creep-fatigue loading. Basis for this study of investigation is an extensive testing program performed on a sample heat of this type of steel by conducting a series of service-like high temperature creep-fatigue tests. The major goal here was to systematically vary specific effects in order to isolate and describe relevant damage contributing mechanisms. Furthermore, some of the tests have been interrupted at several percentages of damage to investigate not only the final microstructure but also their evolution. After performing those tests, the samples were examined using transmission electron microscopy (TEM) to characterize and quantify the microstructural evolutions. The size distribution of subgrains and the dislocation density were determined by using thin metal foils in TEM. A recovery process consisting of the coarsening of the subgrains and a decrease of the dislocation density was observed in different form. This coarsening is heterogeneous and depends on the applied temperature, strain amplitude and hold time. These microstructural observations are consistent with the very fast deterioration of creep properties due to cyclic loading.
1