Skip Nav Destination
Close Modal
Search Results for
hematite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-11 of 11
Search Results for hematite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 777-790, October 22–25, 2013,
... and TP347H (coarse- and fine-grained, respectively). The oxygen level of the feed water had little effect on the steam oxidation rates of all the steels tested. Hematite (Fe 2 O 3 ) formed in the outer layer of the oxide scales on both the ferritic and austenitic steels and is considered to have been...
Abstract
View Papertitled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler Tube Materials
View
PDF
for content titled, Effect of Oxygen Content of Steam on the Steam Oxidation Behavior of Boiler Tube Materials
CWT (combined water treatment) was introduced in Japan in 1990 and over 50 power generation boilers are now in operation. However, the effect of oxygenated treatment on the steam oxidation of the ferritic-martensitic steels and austenitic stainless steels that are used for superheaters and reheaters is currently far from clear. In this study, laboratory tests were used to examine the effect of the oxygen level of the feed water on the scale growth and the scale exfoliation propensity of T91 ferritic-martensitic steel and 300-series austenitic stainless steels, as represented by TP316H and TP347H (coarse- and fine-grained, respectively). The oxygen level of the feed water had little effect on the steam oxidation rates of all the steels tested. Hematite (Fe 2 O 3 ) formed in the outer layer of the oxide scales on both the ferritic and austenitic steels and is considered to have been encouraged in the simulated CWT atmosphere. The adhesion strength of the oxide scale formed on T91 in the simulated CWT atmosphere, that is, scale in which hematite was present, was lower than that of the oxide scale formed in the simulated AVT (all volatile treatment) atmosphere. The oxidation rate of fine-grained TP347H was confirmed to be slower than that of coarse-grained TP316H. Hematite significantly influenced the scale exfoliation of the austenitic steels and the critical oxide thickness for exfoliation decreased with increasing proportion of hematite in the outer scale.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 472-484, October 25–28, 2004,
... Abstract The oxidation behavior of X20 steel in steam environments was studied isothermally between 580-640°C. Initially, the magnetite (Fe 3 O 4 ) phase formed on the surface. With increasing time and temperature, the hematite (Fe 2 O 3 ) phase formed. The oxide scale consisted of an inner...
Abstract
View Papertitled, High-Temperature Oxidation Behavior of X20 CrMoV 12.1 Boiler Tube Material
View
PDF
for content titled, High-Temperature Oxidation Behavior of X20 CrMoV 12.1 Boiler Tube Material
The oxidation behavior of X20 steel in steam environments was studied isothermally between 580-640°C. Initially, the magnetite (Fe 3 O 4 ) phase formed on the surface. With increasing time and temperature, the hematite (Fe 2 O 3 ) phase formed. The oxide scale consisted of an inner layer divided from an outer layer by the original metal surface. A Cr-rich area was observed beneath the original metal surface. Oxide scales formed on a serviced boiler tube at 540°C for 7000h were also analyzed and found to be similar in oxide phase composition to those formed on X20 steel under laboratory conditions. However, differences existed in the microstructure and distribution of the Cr-rich area within the oxide scale. It was concluded that the oxidation mechanism under field conditions differs from that under laboratory conditions.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 197-204, October 21–24, 2019,
... in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms...
Abstract
View Papertitled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
View
PDF
for content titled, Microstructural Evolution and Steam Oxidation Resistance of Field-Tested Thor 115 Steel
A new ferritic steel branded as Thor 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy was extensively tested to assess the high-temperature time- dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide (M 23 C 6 ) and nitride phases (MX). Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray powder diffraction on specimens aged up to 50,000 hours. The material behavior was also tested in service conditions, to validate the laboratory results: Thor 115 tubing was installed in a HRSG power plant, directly exposed to turbine flue gasses. Tubing samples were progressively extracted, analyzed and compared with laboratory specimens in similar condition. This research shows the performance of Thor 115 regarding steam oxidation and microstructure evolution up to 25,000 exposure hours in the field. So far, no oxide microstructure difference is found between the laboratory and on field tubing: in both cases, the oxide structure is magnetite/hematite and Cr-spinel layers and the oxide thickness values lay within the same scatter band. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 939-947, October 21–24, 2019,
... if more hematite would form in the oxide scale in the OT condition. EXPERIMENTAL PROCEDURE Table 1 summarizes the measured compositions of the alloys reported in this study. Specimens were typically ~1.5 x 12 x 20 mm with a final 600 grit surface finish on all sides. The shot-peened 304H specimens (inner...
Abstract
View Papertitled, Water Chemistry and Pressure Effects on Steam Oxidation of Ferritic and Austenitic Steels
View
PDF
for content titled, Water Chemistry and Pressure Effects on Steam Oxidation of Ferritic and Austenitic Steels
Traditional laboratory steam experiments are conducted at ambient pressure with water of variable chemistry. In order to better understand the effect of steam pressure and water chemistry, a new recirculating, controlled chemistry water loop with a 650°C autoclave was constructed. The initial experiments included two different water chemistries at 550° and 650°C. Two 500-h cycles were performed using oxygenated (OT, pH ~9 and ~100 ppb O 2 ) or all-volatile treated (AVT, pH ~9 and <10 ppb O 2 ) water conditions at each temperature. Coupons exposed included Fe-(9-11)%Cr and conventional and advanced austenitic steels as well as shot peened type 304H stainless steel. Compared to ambient steam exposures, the oxides formed after 1,000 h were similar in thickness for each of the alloy classes but appeared to have a different microstructure, particularly for the outer Fe-rich layer. An initial attempt was made to quantify the scale adhesion in the two environments.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1024-1035, October 21–24, 2019,
... for sample cross-sections. The red coloring to the samples indicates the formation of a hematite (Fe2O3) oxide scale. Oxide was observed to spall from samples starting at 1000 hours exposure, and this can be seen for the 1845-hrs sample image. The measured oxide thickness values are shown together...
Abstract
View Papertitled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
View
PDF
for content titled, Investigating the Electrical Resistance Technique for Structural Alloy Corrosion Monitoring within Supercritical CO 2 Power Cycles
Structural alloy corrosion is a major concern for the design and operation of supercritical carbon dioxide (sCO 2 ) power cycles. Looking towards the future of sCO 2 system development, the ability to measure real-time alloy corrosion would be invaluable to informing operation and maintenance of these systems. Sandia has recently explored methods available for in-situ alloy corrosion monitoring. Electrical resistance (ER) was chosen for initial tests due the operational simplicity and commercial availability. A series of long duration (>1000 hours) experiments have recently been completed at a range of temperatures (400-700°C) using ER probes made from four important structural alloys (C1010 Carbon Steel, 410ss, 304L, 316L) being considered for sCO 2 systems. Results from these tests are presented, including correlations between the probe measured corrosion rate to that for witness coupons of the same alloys.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 832-843, October 11–14, 2016,
... oxide of a mixed Fe, Cr spinel (Fe1+x(Cr)2xO4) and an outer oxide of magnetite with the potential for the outermost region of the scale to transform into hematite [4 6]. Molybdenum, silicon and manganese have also been observed within the oxide scale but are beyond the scope of this report [6,7...
Abstract
View Papertitled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
View
PDF
for content titled, The Influence of Surface Quality of Grade 91 Tubing on Long-Term Oxidation in Steam
Oxide scale formation in the inner bore of steam tubing has been identified as a key metric for determining operational parameters and life expectancy of modern boiler systems. Grade 91 tubing is commonly used for the construction of key components within boiler systems designed for power generation operating in the temperature range of 500 to 650 °C. Standard laboratory test procedures involve grinding the surface of test coupons to homogenise their surface structure and improve experimental consistency, however, data presented here shows a discrepancy between laboratory and industrial practices that has long term implications on scale growth kinetics and morphological development. Microstructural analysis of both virgin and ex-service tubing reveals the presence of a pre-existing oxide structure that is incorporated into the inwardly growing scale and is implicated in the formation of multiple laminar void networks. These void networks influence thermal diffusivity across the scale and may function as regions of spallation initiation and propagation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 205-216, October 21–24, 2019,
... and also at the interface inner layer and internal oxidation zone. Large porosity was found within the outer magnetite layer, but also gap formation took place at the original metal surface. As a consequence, the outward flux of Fe is impeded and thus a hematite is developed on the scale surface. The MARBN...
Abstract
View Papertitled, Super VM12—A New 12% Cr Boiler Steel
View
PDF
for content titled, Super VM12—A New 12% Cr Boiler Steel
The newly developed 12%Cr steel Super VM12 is characterized by excellent creep rupture strength properties (better than Grade 92) and enhanced steam oxidation resistance of 12%Cr steels such as VM12-SHC. Balanced properties profile of the new steel development in comparison to the existing well-established steels such as Grade 91 and Grade 92, opens opportunities for its application as construction material for components in existing or future high-efficiency power plants. In this study the oxidation behavior of typical 9%Cr steels was compared with the new steel development. The oxide scale morphologies and compositions of different oxide layers as function of temperature and exposure time in steam-containing atmospheres were characterized using light optical metallography, Scanning Electron Microscopy (SEM). Creep testing has been carried out in the temperature range between 525°C and 700°C. Selected creep specimens were investigated using the Transmission Electron Microscopy and the Atom Probe Tomography techniques.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 243-253, August 31–September 3, 2010,
... multiple cracks perpendicular to the tube wall (Figures 1a and 1e) with some of them being through cracks. Cracks formed in service would be expected to be decorated with hematite precipitates (lighter gray oxide seen on the outside of some oxides), those cracks without were likely formed during...
Abstract
View Papertitled, Characterization of Reaction Products from Field Exposed Tubes
View
PDF
for content titled, Characterization of Reaction Products from Field Exposed Tubes
In order to assist in developing mechanistic and computational models for understanding the performance of current Fe-base waterwall tubing, characterization has been performed on three field-exposed low alloy steel waterwall tubes. The waterside oxide thickness was characterized using standard metallographic techniques. Alloy and oxide chemical composition was characterized using electron microprobe analysis. Waterside scale thickness was measured as a function of location. Agreement between the measured and predicted values based on likely rate constants was poor.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 129-139, October 3–5, 2007,
... of relatively homogeneous two oxide layers. The internal layer was identified as Fe-Cr oxide with a spinal structure. The external layer is Fe oxide with a hematite structure. Fig.10 shows the comparison of hot corrosion resistance after 20hour heating in synthetic ash between HCMA and conventional steels...
Abstract
View Papertitled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-V) Steel Tube
View
PDF
for content titled, Development of High Strength HCMA (1.25Cr-0.4Mo-Nb-V) Steel Tube
Improvement of thermal efficiency of new power plants by increasing temperature and pressure of boilers has led us to the development of high creep strength steels in the last 10 years. HCMA is the new steel with base composition of 1.25Cr-0.4Mo-Nb-V-Nd, which has been developed by examining the effects of alloying elements on microstructures, creep strength, weldability, and ductility. The microstructure of the HCMA is controlled to tempered bainite with low carbon content and the Vickers hardness value in HAZ is less than 350Hv to allow the application without preheating and post weld heat treatment. The HCMA tube materials were prepared in commercial tube mills. It has been demonstrated that the allowable stress of the HCMA steel tube is 1.3 times higher than those of conventional 1%Cr boiler tubing steels in the temperatures range of 430 to 530°C. It is noted that creep ductility has been drastically improved by the suitable amount of Nd (Neodymium)-bearing. The steam oxidation resistance and hot corrosion resistance of the HCMA have been proved to be the same level of the conventional 1%Cr and 2%Cr steels. It is concluded that the HCMA has a practical capability to be used for steam generator tubing from the aspect of good fabricability and very high strength. This paper deals with the concept of material design and results on industrial products.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 855-866, October 11–14, 2016,
.... The iron oxide can be present as both hematite and magnetite. The figure clearly shows the location of iron rich scale in the upper right-hand image. Below the iron oxide are the spinel layer and sometimes a layer of chromia. The spinel layer is enriched with nickel and chromium. The chromia layer...
Abstract
View Papertitled, Oxidation Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
View
PDF
for content titled, Oxidation Resistance of Shot Peened Austenitic Stainless Steel Superheater Tubes in Steam
Steam-side oxidation and the resultant exfoliation of iron-based scales cause unplanned shutdowns at coal-fired power generation plants. Exfoliate removal is currently limited to frequent unit cycling to minimize the volume of exfoliated scale, upgrading a plant with a “blow down” system, or installing a higher alloy. This paper discusses the rate of steam-side oxidation on Type 304H stainless steel (304H) tube after shot peening the internal surface with commercially available techniques. Shot peening the ID of Type 304H austenitic stainless steel superheater tubes has been shown to improve the overall oxidation resistance in steam. Decreasing the oxidation rate directly impacts the volume of exfoliated scale. The adherent spinel scales are thinner and more robust than non-shot peened tubes of the same alloy. Most of the improved oxidation resistance can be attributed to the presence of a spinel oxide layer combined with a continuous chromia layer formed near the steam-touched surfaces. The presence of a continuous chromia layer vastly reduces the outward diffusion of iron and minimizes the formation of iron-based scales that exfoliate. This work showed that a uniform cold-worker layer along the tube ID has a profound effect on oxidation resistance. Incomplete coverage allows oxidation to proceed in the non-hardened regions at a rate comparable to the oxidation rate on unpeened Type 304H.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1113-1125, October 11–14, 2016,
... exposure times, the scales formed in power plant exposure will tend to show larger extend of void/gap formation similar to those found under laboratory conditions. An interesting observation is that in contrast to the laboratory conditions, hematite is locally formed within the scale under real power plant...
Abstract
View Papertitled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
View
PDF
for content titled, Influence of Aluminum Diffusion Layer on T/P92 Steam Oxidation Resistance - A Laboratory and Field Study
The steam oxidation behaviour of boiler tubes and steam piping components is a limiting factor for improving the efficiency of the current power plants. Spallation of the oxide scales formed during service can cause serious damage to the turbine blades. Vallourec has implemented an innovative solution based on an aluminum diffusion coating applied on the inner surface of the T/P92 steel. The functionality of this coating is to protect the tubular components against spallation and increase the actual operating temperature of the metallic components. In the present study, the newly developed VALIORTM T/P92 product was tested at the EDF La Maxe power plant (France) under 167b and 545°C (steam temperature). After 3500h operation, the tubes were removed and characterized by Light Optical Metallography (LOM), Scanning Electron Microscopy (SEM), with Energy Dispersive X-ray spectrometry (EDX) and X-Ray Diffraction (XRD). The results highlight the excellent oxidation resistance of VALIORTM T/P92 product by the formation of a protective aluminum oxide scale. In addition, no enhanced oxidation was observed on the areas close to the welds. These results are compared with the results obtained from laboratory steam oxidation testing performed on a 9%Cr T/P92 steel with and without VALIORTM coating exposed in Ar-50%H 2 O at 650°C.