Skip Nav Destination
Close Modal
Search Results for
heat-affected-zone
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 157 Search Results for
heat-affected-zone
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 71-79, October 21–24, 2019,
... the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed...
Abstract
View Paper
PDF
A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above A C3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above A C3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above A C3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1160-1169, October 11–14, 2016,
... Abstract Grade 91 steel has been found to be susceptible to Type IV cracking in the base metal heat affected zone (HAZ). In order to better understand this type of failure, a study on the metallurgical reactions occuring within the HAZ was conducted, particularly within the fine grained (FG...
Abstract
View Paper
PDF
Grade 91 steel has been found to be susceptible to Type IV cracking in the base metal heat affected zone (HAZ). In order to better understand this type of failure, a study on the metallurgical reactions occuring within the HAZ was conducted, particularly within the fine grained (FG) and intercritical (IC) regions where Type IV cracking is most commonly found to occur. The course grained (CG), FG and IC regions of the HAZ in Grade 91 steel were simulated using a Gleeble 3800 Thermo-Mechanical Simulator. A dilatometer was used to determine the phase transformations occuring during simulation of weld thermal histories. For the first time, it was shown that ferrite can form in the IC HAZ of Grade 91 steel welds. The magnitude of the ferrite transformation was observed to decrease with faster cooling rates. The presence of ferrite in the simulated IC HAZ microstructure was shown to decrease the high temperature tensile strength and increase the high temperature elongation compared to HAZ regions that did not undergo ferrite transformation. Welding parameters such as heat input, preheat and interpass temperature can be selected to ensure faster cooling rates and reduce or potentially avoid formation of ferrite in the IC HAZ.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 924-935, October 22–25, 2013,
... length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties...
Abstract
View Paper
PDF
Increasing demand on efficiency and power output of steam generators leads to new designs of welded rotors. The reason for rotor welding is the large size of rotors, which are difficult to produce in a single piece. Secondly, as there are varying operation conditions along the rotor length. In a heterogeneous rotor, several materials appropriate for local service conditions can be used. At the rotor service temperatures, creep properties are crucial for successful design. The weakest point of every welded component is the heat affected zone. Therefore, the creep properties of a heterogeneous weld are subject of the investigation herein the current study, a heterogeneous weld of COST F and COST FB2 materials is investigated. The welding was performed by multi pass technique with overlaying welding beads that applied several heating cycles to heat affected zone. Metallographic investigation of the weld was performed and the weakest microstructure spots were detected. With the use of FEM simulation, appropriate heating/cooling cycles were obtained for the detected weak points. The temperature cycles obtained were subsequently applied to both base materials under laboratory conditions by induction heating. Creep properties of these materials were investigated. The influence of the initial base material’s grain size was also considered in the investigation. Two heating/cooling schedules were applied to both base materials with two grain sizes. Altogether, 8 different microstructures were examined in short term creep tests and the results were summarized.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1270-1281, October 21–24, 2019,
... (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C...
Abstract
View Paper
PDF
Small punch creep testing (SPCT) is a small-scale, accelerated creep test that allows for the determination of creep data using a limited amount of material. The question, however, remains how the data generated by this technique correlate to more established techniques such as uniaxial testing and ultimately to predictions regarding the remaining service life of a plant component. This empirical study investigated the microstructure-to-property relationship of welded 9-12%Cr steels as measured using SPCT. Virgin P91 (X10CrMoVNb9-1) steel was joined to service exposed X20 (X20CrMoV12-1) steel using two different filler materials (X20 and P91) via fusion welding. Site-specific samples were extracted from the parent plates, heat affected zones and weld metals using electro-discharge machining. Small punch creep testing were performed using a 276 N load at a temperature of 625°C. The untested sample microstructures were quantitatively characterized using a range of electron microscopy techniques to determine the precipitate (M 23 C 6 , MX) spacing, subgrain sizes and dislocation densities for each region of the weldments. Multiple linear regression analysis found that the subgrain size (λsg) played the largest contribution to the SPCT rupture life. The heat affected zones had the lowest SPCT rupture times (49-68 hours), which corresponded to the largest subgrain sizes (1.1-1.3 μm). The P91 parent plate material had the longest SPCT rupture time (349 hours), which corresponded to the lowest subgrain size (0.8 μm). The P91 weld metal sample showed lower initial deflection rates during the SPC testing, however the presence of non-metallic SiO 2 inclusions in this zone contributed to accelerated brittle failure.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1016-1024, October 22–25, 2013,
... kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since...
Abstract
View Paper
PDF
This paper summarizes recent efforts to improve creep performance in Grade 91 (Mod. 9Cr-1Mo, ASTM A387) steel weldments via non-standard heat treatments prior to welding. Such heat treatments offer a potential solution for minimizing Type IV failures in creep strength enhanced ferritic (CSEF) steels. A lower temperature tempering (LTT, 650°C) of the 9Cr steels prior to gas tungsten arc welding (GTAW) resulted in improved creep-rupture life at 650°C compared to the samples tempered at a standard condition (HTT, 760°C) before welding. From detailed characterization of precipitation kinetics in the heat affected zone, it was hypothesized that M 23 C 6 carbides in the fine-grain heat-affected zone (FGHAZ) in the LTT sample were fully dissolved, resulting in re-precipitation of strengthening carbides during post weld heat treatment (PWHT). This was not the case in the HTT sample since M 23 C 6 in the FGHAZ was only partially dissolved prior to welding, which caused coarsening of existing M 23 C 6 after PWHT and premature creep failure in the FGHAZ. However, it was also found that the LTT raised the ductile-brittle transition temperature above room temperature (RT). Two different thermo-mechanical treatments (TMTs); two-step tempering and aus-forging/aus-aging, of the modified 9Cr-1Mo steels were attempted, in order to control the balance between creep properties and RT ductility, through control of precipitation kinetics of the M 23 C 6 carbides and/or MX carbo-nitrides. The hardness map of the TMT samples after GTAW and PWHT were evaluated.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1199-1206, October 11–14, 2016,
... the formation of the microstructure in the weld regions around the site of failure. Thermal histories were therefore measured inside the Grade 91 steel heat affected zone (HAZ) of an autogenous weld and of a DMW in the form of bead on plate with Alloy 625 to study the effect of the weld thermal cycle...
Abstract
View Paper
PDF
Unpredictable failures near the phase boundary in Grade 91 dissimilar metal welds (DMW) with nickel based filler metals represent a significant problem for the power generation industry. In order to determine the root cause for these failures, it is necessary to understand the formation of the microstructure in the weld regions around the site of failure. Thermal histories were therefore measured inside the Grade 91 steel heat affected zone (HAZ) of an autogenous weld and of a DMW in the form of bead on plate with Alloy 625 to study the effect of the weld thermal cycle on microstructural formation. It was found that the HAZ in the DMW experienced longer dwell time at high temperatures because of the latent heat of fusion released during Alloy 625 solidification (1350 - 1125 °C). This allowed longer time for carbide dissolution and phase transformations in the DMW than in the autogenous weld. Additionally, the 625 filler metal created a large chemical potential gradient for carbon, which when combined with longer dwell times, yielded carbon depletion in the heat affected zone. Retention of δ ferrite in the coarse grained HAZ (CGHAZ) of DMWs was found to be an indicator for these mechanisms.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 989-1000, October 11–14, 2016,
... in the heat affected zone, so that no uniform fine-grained zone is present. The behaviour of crosswelds during long-term creep testing at 650 °C up to more than 32.000 hours is assessed and the susceptibility to Type IV cracking is discussed. The manuscript summarizes research of more than 10 years, presents...
Abstract
View Paper
PDF
The presented work summarizes the results of more than 10 years of research at TU Graz and TU Chemnitz and partners on a martensitic boron and nitrogen stabilized 9Cr3W3Co (MARBN) steel grade. The design philosophy of MARBN steels is presented and critical issues regarding boron and nitrogen balance are discussed. Microstructural characterization of two different laboratory heats, is presented and efforts in European projects towards an upscaling of melts are presented. Base material creep testing data at 650 °C up to 50.000 hours is presented and assessed to commercial alloys such as ASTM grades P91 and P92. An increase of creep rupture stress of more than +20% was recorded. Oxidation tests in steam at 650°C revealed an anomalous response of the material. Several specimens exhibited excellent oxidation resistance commonly only seen for grades of higher chromium content. The anomalous oxidation behaviour is identified and discussed, although the causes remain yet unclear. Results of manufacturing, characterization and testing of different MARBN welds, including gas-tungsten-arc-, gas-metal-arc-, friction stir and electron beam welds reveal a microstructure memory effect in the heat affected zone, so that no uniform fine-grained zone is present. The behaviour of crosswelds during long-term creep testing at 650 °C up to more than 32.000 hours is assessed and the susceptibility to Type IV cracking is discussed. The manuscript summarizes research of more than 10 years, presents current research activities on MARBN and describes open questions for an alloy identified as a promising martensitic steel grade for elevated temperature components.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 253-264, October 21–24, 2019,
... Abstract For VM12-SHC 11-12 wt. % Cr steel, there have been no systematic investigations to define the regions or characterise the microstructures within the heat-affected zone (HAZ) of weldments. In similar steels, these regions relate to the Ac 1 and Ac 3 transformation temperatures and can...
Abstract
View Paper
PDF
For VM12-SHC 11-12 wt. % Cr steel, there have been no systematic investigations to define the regions or characterise the microstructures within the heat-affected zone (HAZ) of weldments. In similar steels, these regions relate to the Ac 1 and Ac 3 transformation temperatures and can affect weldment performance. In this study, controlled thermal cycles were applied to VM12-SHC parent metal using a dilatometer and the Ac 1 and Ac 3 temperatures were measured for various heating rates. The Ae 1 and Ae 3 temperatures were also calculated by thermodynamic equilibrium modeling. Through dilatometry, thermal cycles were then applied to simulate the microstructures of the classically defined HAZ regions. The microstructural properties of each simulated material were investigated using advanced electron microscopy techniques and micro-hardness testing. It was found that the simulated HAZ regions could be classified as; (1) the completely transformed (CT) region, with complete dissolution of pre-existing precipitates and complete reaustenitisation; (2) the partially transformed (PT) region, exhibiting co-existing original martensite with nucleating austenite microstructures with partial dissolution of precipitates; and (3) the over tempered (OT) region, with no phase transformation but precipitate coarsening and decreased hardness.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 22-34, October 21–24, 2019,
... Abstract Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase...
Abstract
View Paper
PDF
Damage in the grade 91 steel partially transformed zone of weld heat affected zones has historically been associated with many different types of microstructural features. Features described as being responsible for the nucleation of creep damage include particles such as laves phase, coarse M 23 C 6 , inclusions, nitrides, or interactions between creep strong and creep week grains, grain boundaries and potentially other sources. Few studies have attempted to link the observations of damage on scales of increasing detail from macro, to micro, to nano. Similarly, assessments are not made on a statistically relevant basis using 2D or 3D microscopy techniques. In the present paper, 2D assessment using scanning electron microscopy (SEM) and quantification techniques such as energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are utilized in combination with 3D serial sectioning of large volumes using plasma focused ion beam milling (P-FIB) and simultaneous EDS to evaluate an interrupted cross-weld creep test. Moreover, the sample selected for examination was from a feature cross-weld creep test made using a parent material susceptible to the evolution of creep damage. The test conditions were selected to give creep brittle behaviour and the sample was from a test interrupted at an estimated life fraction of 60%. The findings from these evaluations provide perspective on the features in the microstructure responsible for the nucleation and subsequent growth of the observed damage.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1282-1293, October 21–24, 2019,
... Abstract Type IV creep damage of high chromium steel is a problem in thermal power plants and a method of evaluating remaining life is required. Type IV creep damage is characterized by many voids that initiate in the weldment fine grain heat affected zone (FGHAZ), where the stress...
Abstract
View Paper
PDF
Type IV creep damage of high chromium steel is a problem in thermal power plants and a method of evaluating remaining life is required. Type IV creep damage is characterized by many voids that initiate in the weldment fine grain heat affected zone (FGHAZ), where the stress multiaxiality (expressed by the Triaxiality Factor, TF) is high. As the creep continues, the shape of the grain boundary becomes simple; that is, close to a straight line. It is known that the grain boundary is fractal. The complexity of the fractal is represented by the fractal dimension. Therefore, we considered that the fractal dimension of the grain boundary in FGHAZ could be an indication of creep damage and studied its change as creep proceeded. First, creep tests were conducted to produce damaged materials, and their fractal dimensions were measured. Next, FEM analysis was conducted to obtain the distribution of the principal stress, TF, and creep strain of the observed surface. The distribution of creep damage was obtained by the time fraction rule. The results of this evaluation confirmed that the fractal dimension of the grain boundary decreases with creep time and that the principal stress and TF affect it.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 162-173, October 21–24, 2019,
.... Weld joints were made and large sized creep test specimens were machined. Creep tests were performed at 903K, 40MPa. Specimen made from low purity material fractured at fine grained heat affected zone (FGHAZ) and showed so-called Type IV cracking. On the other hand, specimen made from high purity...
Abstract
View Paper
PDF
Two materials with different purity of 2.25Cr-1Mo steel thick weld joint were prepared and creep rupture behavior was investigated by large sized specimens. For high purity material, two types of challenging heat treatment was tried to modify the original microstructural conditions. Weld joints were made and large sized creep test specimens were machined. Creep tests were performed at 903K, 40MPa. Specimen made from low purity material fractured at fine grained heat affected zone (FGHAZ) and showed so-called Type IV cracking. On the other hand, specimen made from high purity material showed maximum creep damage at weld metal. In the case of specimens applied challenging heat treatment, remarkably high ductility were observed at fracture. Regarding 2.25Cr-1Mo steel, it was confirmed that the suppression of Type IV cracking had been basically achieved by past improvement on purity level. At the same time, improvement of heat treatment condition was found to have further effect. Because of improved creep properties of high purity material, properties of weld metal had rose up to be the next issue to be examined. At least, taking care on layout design of weld beads to avoid creating wide spread fine grained portion is desired.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 987-998, October 25–28, 2004,
.... Notably, no Type IV failures were observed during creep testing. Welding introduced a large-grained microstructure in the heat-affected zone (HAZ) heated to the austenite transformation temperature (Ac3 HAZ). This contrasts with the grain refinement observed in the same region of conventional heat...
Abstract
View Paper
PDF
This study investigated the creep rupture strength and microstructure evolution in welded joints of high-boron, low-nitrogen 9Cr steels developed by NIMS. The welds were fabricated using the GTAW process and Inconel-type filler metal on steel plates with varying boron content (47-180 ppm). Creep rupture tests were conducted at 923K for up to 10,000 hours. Despite their higher boron content, these steels exhibited good weldability. Welded joints of the boron steel displayed superior creep properties compared to conventional high-chromium ferritic steel welds like P92 and P122. Notably, no Type IV failures were observed during creep testing. Welding introduced a large-grained microstructure in the heat-affected zone (HAZ) heated to the austenite transformation temperature (Ac3 HAZ). This contrasts with the grain refinement observed in the same region of conventional heat-resistant steel welds. Interestingly, the grain size in this large microstructure was nearly identical to that of the base metal. Analysis of the simulated Ac3 HAZ revealed crystal orientation distributions almost identical to those of the original specimen. This suggests a regeneration of the original austenite structure during the alpha-to-gamma phase transformation. Simulated Ac3 HAZ structures of the boron steel achieved creep life nearly equivalent to the base metal. The suppression of Type IV failure and improved creep resistance in welded joints of the boron steels are likely attributed to the large-grained HAZ microstructures and stabilization of M 23 C 6 precipitates. The optimal boron content for achieving the best creep resistance in welded joints appears to lie between 90 and 130 ppm, combined with minimized nitrogen content.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 573-585, October 22–25, 2013,
... affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat...
Abstract
View Paper
PDF
The objective of this study was to determine the typical range of weld metal cooling rates and phase transformations during multipass gas-tungsten arc (GTA) welding of Grade 23 (SA-213 T23) tubing, and to correlate these to the microstructure and hardness in the weld metal and heat affected zone (HAZ). The effect of microstructure and hardness on the potential susceptibility to cracking was evaluated. Multipass GTA girth welds in Grade 23 tubes with outside diameter of 2 in. and wall thicknesses of 0.185 in. and 0.331 in. were produced using Grade 23 filler wire and welding heat input between 18.5 and 38 kJ/in. The weld metal cooling histories were acquired by plunging type C thermocouples in the weld pool. The weld metal phase transformations were determined with the technique for single sensor differential thermal analysis (SS DTA). The microstructure in the as-welded and re-heated weld passes was characterized using light optical microscopy and hardness mapping. Microstructures with hardness between 416 and 350 HV 0.1 were found in the thick wall welds, which indicated potential susceptibility to hydrogen induced cracking (HIC) caused by hydrogen absorption during welding and to stress corrosion cracking (SSC) during acid cleaning and service.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 615-626, October 22–25, 2013,
.... In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT...
Abstract
View Paper
PDF
Grade 92 steel has been widely applied in the power generation industry for use as steam pipes, headers, tubes, etc. owing to a good combination of creep and corrosion resistance. For the welding of thick section pipes, a multi-pass submerged arc welding process is typically used to achieve sufficient toughness in the weld. To relieve the internal stress in the welds and to stabilise their microstructures, a post weld heat treatment (PWHT) is commonly applied. The heat treatment conditions used for the PWHT have a significant effect on both the resulting microstructure and the creep behaviour of the welds. In this study, interrupted creep tests were carried out on two identical Grade 92 welds that had been given PWHTs at two different temperatures: 732°C and 760°C. It was found that the weld with the lower PWHT temperature had a significantly reduced stain rate during the creep test. In addition, microstructural examination of the welds revealed that the primary location of creep damage was in the heat affected zone in the sample with the lower PWHT temperature, whereas it was in the weld metal in the sample with the higher PWHT temperature. To understand the effect of the different PWHT temperatures on the microstructure, initially the microstructures in the head portions of the two creep test bars were compared. This comparison was performed quantitatively using a range of electron/ion microscopy based techniques. It was apparent that in the sample subjected to the higher PWHT temperature, larger Laves phase particles occurred and increased matrix recovery was observed compared with the sample subjected to the lower PWHT temperature.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
... captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated...
Abstract
View Paper
PDF
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 931-938, October 11–14, 2016,
... tubes with commercial filler wire for W62-10CMWV-Co (Gr. 92) or Ni base filler wire ERNiCr-3 (Alloy82) also have much better creep rupture strength than those of conventional steels because of suppression of refining in the Heat-Affected-Zone (HAZ). However, the creep rupture strength of weld metal...
Abstract
View Paper
PDF
Developed 9Cr-3W-3Co-Nd-B heat-resistant steel SAVE12AD (Recently designated as ASME Grade 93) pipes and tubes have higher creep strength in both base metal and welded joints than conventional high Cr ferritic steels such as ASME Grades 91, 92 and 122. The welded joints of SAVE12AD tubes with commercial filler wire for W62-10CMWV-Co (Gr. 92) or Ni base filler wire ERNiCr-3 (Alloy82) also have much better creep rupture strength than those of conventional steels because of suppression of refining in the Heat-Affected-Zone (HAZ). However, the creep rupture strength of weld metal of W62-10CMWV-Co was marginal. Additionally, the hot cracking susceptibility of weld metal using Ni base filler wire ERNiCr-3 was occasionally below the required level. Similar welding consumable for SAVE12AD has been developed to solve these problems. Optimization of nickel, neodymium and boron contents on similar welding consumable enables to obtain both the good long-term creep rupture strength and low enough hot cracking susceptibility of weld metal. Consequently, SAVE12AD welded joint is expected to be applied of piping and tubing above 600°C in USC power plants because of its good properties with similar welding consumable.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 951-961, October 11–14, 2016,
... and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study...
Abstract
View Paper
PDF
As flux cored wires for gas metal arc welding offer several technical and economic advantages they are becoming more and more popular. Matching flux cored wires for welding P92 have already been available for several years. A matching flux cored wire for welding the Co-alloyed cast steel CB2, which is used for turbine and valve casings operating at steam temperatures of up to 620°C, was developed recently. To connect casings with P92 pipes, dissimilar welding of CB2 to P92 is necessary. This can be done with filler metal that matches either CB2 or P92. Pre-tests have confirmed that flux cored arc welding (FCAW) can generally be used for dissimilar joint welding of CB2 to P92. To evaluate creep rupture strength dissimilar welds were performed with filler metal matching CB2 and P92, respectively. TIG welding was used for the root and the second pass and FCAW for the intermediate and final passes. Cross-weld tensile tests, side bend tests and impact tests of weld metals and heat-affected zones were carried out at ambient temperatures after two post-weld heat treatments (PWHT), each at 730°C for 12 hours. Creep rupture tests of cross-weld samples were performed at 625°C. This study compares the results of the mechanical tests at ambient temperature and the creep rupture tests, and discusses why P92 filler metals are preferred for such welds.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1086-1097, October 11–14, 2016,
... adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water...
Abstract
View Paper
PDF
During commissioning of recently built modern, and highly efficient coal-fired power plants, cracks were detected after very short time of operation within the welds of membrane walls made from alloy T24. The root cause analysis revealed transgranular and mostly intergranular cracks adjacent to the heat affected zone beside weld joints. At that time, the degradation mechanism was rather unclear, which led to an extended root cause analysis for clarification of these failures. The environmentally assisted cracking behavior of alloy T24 in oxygenated high-temperature water was determined by an experimental test program. Hereby, the cracking of 2½% chromium steel T24 and 1% chromium steel T12 were determined in high-temperature water depending on the effect of water chemistry parameters such as dissolved oxygen content, pH, and temperature, but also with respect to the mechanical load component by residual stresses and the microstructure. The results clearly show that the cracking of this low-alloy steel in oxygenated high-temperature water is driven by the dissolved oxygen content and the breakdown of the passive corrosion protective oxide scale on the specimens by mechanical degradation of the oxide scale as fracture due to straining. The results give further evidence that a reduction of the residual stresses by a stress relief heat treatment of the boiler in combination with the strict compliance of the limits for dissolved oxygen content in the feed water according to water chemistry standards are effective countermeasures to prevent environmentally assisted cracking of T24 membrane wall butt welds during plastic strain transients.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 703-712, October 25–28, 2004,
...: tangential, longitudinal, and longitudinal with a heat-affected zone in the middle of the gauge length using the isostress testing method. Metallographic examination of the broken specimens was conducted. Linear extrapolation of the rupture times to the service temperature yielded a residual service life...
Abstract
View Paper
PDF
Numerous factors, including actual chemical composition, heat treatment, microstructure, dimensions, and service conditions, determine the lifetime of creep-exposed components. This creates a wide gap between the real condition of a given steel pipe and its project specification. For a 141MW unit main steam line, the remaining life calculated according to the German Boiler Code TRD 508 was found to be almost exhausted. It was recommended to remove a pipe sample with a circumference weld for laboratory examination. Stress rupture tests were performed on three types of specimens: tangential, longitudinal, and longitudinal with a heat-affected zone in the middle of the gauge length using the isostress testing method. Metallographic examination of the broken specimens was conducted. Linear extrapolation of the rupture times to the service temperature yielded a residual service life of more than 100,000 hours.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1079-1089, October 21–24, 2019,
... hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light...
Abstract
View Paper
PDF
CrMoV cast steels are widely utilized for steam turbine and valve casings, and are subjected to operating and loading conditions which can promote damage mechanisms such as thermal fatigue, creep, erosion, etc. These components are subjected to variable, and sometimes severe conditions because of flexible operation. Therefore, there is a growing need for weld repair techniques including those which do not mandate post weld heat treatment (PWHT), e.g. so-called ‘temper bead’ weld repair. In this study, a simulated weld repair was performed using a temper bead technique. The maximum hardness in the heat affected zone (HAZ) CrMoV steel was ≤400HV. The integrity of the repair methodology was investigated using destructive testing, including hardness mapping, Charpy impact tests, tensile tests, low cycle fatigue and cross-weld creep, and the microstructure was assessed using light optical microscopy and scanning electron microscopy (SEM).
1