Skip Nav Destination
Close Modal
Search Results for
headers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 137
Search Results for headers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 919-929, October 25–28, 2004,
... steel. Results are presented for tubes and pipes cast with a variety of surface conditions. In addition, detailed results are provided on the effects of alloying elements on creep and oxidation resistance. bending boiler tubes creep rupture strength ferritic stainless steel headers...
Abstract
View Papertitled, VM12 - A New 12%Cr Steel for Boiler Tubes, <span class="search-highlight">Headers</span> and Steam Pipes in Ultra Supercritical Power Plants
View
PDF
for content titled, VM12 - A New 12%Cr Steel for Boiler Tubes, <span class="search-highlight">Headers</span> and Steam Pipes in Ultra Supercritical Power Plants
A new 12%Cr steel, VM12, has been developed with the combined strength and oxidation resistance characteristics desired for high-temperature applications. The steel increases chromium content by around 0.2% to improve oxidation properties while alloying with other elements such as cobalt, tungsten, and boron to meet a range of requirements, including extending fatigue life. The steel is designed to have the same creep strength as T/P92 but with better oxidation resistance due to the higher chromium content. It has about a 0.2% increase in mechanical properties compared to T/P92 steel. Results are presented for tubes and pipes cast with a variety of surface conditions. In addition, detailed results are provided on the effects of alloying elements on creep and oxidation resistance.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 260-270, October 11–14, 2016,
...) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617...
Abstract
View Papertitled, Design, Operation, Numerical Simulation and Damage Assessment of a <span class="search-highlight">Header</span> in the HWT Test Loop
View
PDF
for content titled, Design, Operation, Numerical Simulation and Damage Assessment of a <span class="search-highlight">Header</span> in the HWT Test Loop
In the test loop HWT II (High Temperature Materials Test Loop) installed in the fossil power plant Grosskraftwerk (GKM) Mannheim in Germany, thick-walled components made of nickel base alloys were operated up to temperature of 725 °C. The operation mode chosen (creep-fatigue) was to simulate a large number of start-ups and shutdowns with high gradients as expected for future high efficient and flexible power plants and to investigate the damage due to thermal fatigue of the used nickel base alloys. In this paper the damage evolution of a header made of the nickel base alloys Alloy 617 B and Alloy C263, which was a part of HWT II test rig, were investigated using nondestructive and destructive techniques. Furthermore, the damage has been considered and evaluated by using numerical methods. In addition, different lifetime assessment methods of standards and recommendations with focus on creep-fatigue damage were used and evaluated. The different lifetime models are applied to the header and the results were compared to the results of metallographic investigations and damage observations.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 326-335, October 11–14, 2016,
... Abstract This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable...
Abstract
View Papertitled, Research on HR6W Manufactured Reheater Outlet <span class="search-highlight">Header</span> of the Advanced USC Boiler
View
PDF
for content titled, Research on HR6W Manufactured Reheater Outlet <span class="search-highlight">Header</span> of the Advanced USC Boiler
This paper reports the performance of HR6W iron-nickel based alloy and 617B nickel based alloy which are the candidate material for high temperature reheater outlet header of advanced secondary reheat ultra-supercritical unit boiler with reheat steam 653 °C, and analysis the applicable temperature range of the material. As a result, HR6W is the appropriate material to manufacture high temperature reheater outlet header of A-USC boiler with parameters 620°C /653°C/653°C.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 983-988, October 11–14, 2016,
... Abstract The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic...
Abstract
View Papertitled, Inspection and Evaluation of Defects on the Welds of P92 <span class="search-highlight">Header</span>
View
PDF
for content titled, Inspection and Evaluation of Defects on the Welds of P92 <span class="search-highlight">Header</span>
The inspection and evaluation of defects in the welds of P92 high temperature reheater header with a diameter of about 1000mm and a wall thickness of about 100 mm have been done by means of hardness test, nondestructive testing on the surface, ultrasonic testing, metallographic and component sampling. By analyzing the results of on-site test and samples removed from the component, it is found that cracks existing in the welds are hydrogen induced delayed cracks. During the welding process and post-heating treatment (hydrogen bake-out), dehydrogenation was insufficient. This fact, combined with welding residual stresses resulted in the observed hydrogen induced cracking.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 590-600, October 3–5, 2007,
... Abstract In 2004, extensive Type IV cracking was discovered in the branch and attachment welds of a modified 9Cr (Grade 91) header after 58,000 hours of service. The header, installed as a retrofit in a 500MW unit in 1992, was inspected early due to concerns over the incorporation of low...
Abstract
View Papertitled, Service Experience with a Retrofit Modified 9Cr (Grade 91) Steel <span class="search-highlight">Header</span>
View
PDF
for content titled, Service Experience with a Retrofit Modified 9Cr (Grade 91) Steel <span class="search-highlight">Header</span>
In 2004, extensive Type IV cracking was discovered in the branch and attachment welds of a modified 9Cr (Grade 91) header after 58,000 hours of service. The header, installed as a retrofit in a 500MW unit in 1992, was inspected early due to concerns over the incorporation of low nitrogen-to-aluminum (N:Al) ratio components, a factor previously linked to premature failures of this steel grade in the UK. Investigations confirmed the presence of coarse aluminum nitride (AlN) precipitates, a depleted VN-type MX precipitate population, and reduced parent and Type IV creep strength in low N:Al ratio material. Cracking predominantly occurred on the header barrel sides of the welds in material that, despite meeting ASTM compositional requirements, exhibited this unfavorable N:Al ratio. This paper summarizes the inspection history, detailing crack distribution observed in 2004 and a subsequent outage in 2006. The findings are analyzed in the context of Grade 91’s Type IV creep life shortfall and its dependence on chemical composition, with broader implications for other Grade 91 components in service.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1172-1182, February 25–28, 2025,
... Abstract In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe...
Abstract
View Papertitled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet <span class="search-highlight">Header</span>
View
PDF
for content titled, Assessment of a Grade 91 Steel Forging and Seamless Pipe Section After 141,000-Hours of Operation in a Superheat Outlet <span class="search-highlight">Header</span>
In this work, two unique heats of 9Cr creep strength enhanced ferritic (CSEF) steels extracted from a retired superheat outlet header after 141,000 hours of service were evaluated. These two CSEF steels were a forging manufactured to SA-182 F91 (F91) reducer and a seamless pipe produced to SA-335 P91 (P91) pipe. Their creep deformation and fracture behavior were assessed using a lever arm creep frame integrated with in-situ high-temperature digital image correlation (DIC) system. Critical metallurgical and microstructure factors, including composition, service damage, grain matrix degradation, precipitates, and inclusions were quantitatively characterized to link the performance of the two service aged F91 and P91 CSEF steels. The creep test results show the F91 and P91 steels exhibit a large variation in creep strength and creep ductility. The F91 steel fractured at 572 hours while P91 steel fractured at 1,901 hours when subjected to a test condition of 650 °C and 100 MPa. The nominal creep strains at fracture were 12.5% (F91) and 14.5% (P91), respectively. The high-resolution DIC strain measurements reveal the local creep strain in F91 was about 50% while the local creep strain in P91 was >80%. The characterization results show that the F91 steel possessed pre-existing creep damage from its time in service, a higher fraction of inclusions, and a faster matrix grain coarsening rate. These features contribute to the observed reduction in performance for the F91 steel. The context for these findings, and the importance of metallurgical risk in an integrated life management approach will be emphasized.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 418-428, February 25–28, 2025,
... plant is performed to capture risk areas for the FAC. A computational fluid dynamics study of the flow is done to understand the flow behavior in the damaged tubes next to an inlet header. Some modifications such as flow distributor installation and tube sleeve installation were performed for short-term...
Abstract
View Papertitled, Flow Accelerated Corrosion Investigation and Mitigation in a Heat Recovery Steam Generator
View
PDF
for content titled, Flow Accelerated Corrosion Investigation and Mitigation in a Heat Recovery Steam Generator
Recently, single-phase flow accelerated corrosion (FAC) has been found extensively in Thailand, especially in single shaft combined cycle power plant heat recovery steam generators, the design of which are compact and cannot be easily accessed for service. This takes at least one week for repairing and costs at least half a million dollar per shutdown. In this paper, the investigation of the single-phase FAC in a high-pressure economizer of a combined cycle power plant is demonstrated. Water chemical parameters such as pH and dissolved oxygen are reviewed, the process simulation of the power plant is performed to capture risk areas for the FAC. A computational fluid dynamics study of the flow is done to understand the flow behavior in the damaged tubes next to an inlet header. Some modifications such as flow distributor installation and tube sleeve installation were performed for short-term solutions. Moreover, new economizer headers are designed with low alloy material to mitigate the problem. The installation process of the newly fabricated headers is finally described. The findings in this paper serve as a guideline for FAC risk assessment, FAC investigation and mitigation, and service in compact heat recovery steam generators.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1025-1037, October 22–25, 2013,
... current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC...
Abstract
View Papertitled, Practical Guide to Welding Inconel Alloy 740H
View
PDF
for content titled, Practical Guide to Welding Inconel Alloy 740H
The use of high-nickel superalloys has greatly increased among many industries. This is especially the case for advanced coal-fired boilers, where the latest high temperature designs will require materials capable of withstanding much higher operating temperatures and pressures than current designs. Inconel alloy 740H (UNS N07740) is a new nickel- based alloy that serves as a candidate for steam header pipe and super-heater tubing in coal-fired boilers. Alloy 740H has been shown to be capable of withstanding the extreme operating conditions of an advanced ultra-super-critical (AUSC) boiler, which is the latest boiler design, currently under development. As with all high nickel alloys, welding of alloy 740H can be very challenging, even to an experienced welder. Weldability challenges are compounded when considering that the alloy may be used in steam headers, where critical, thick-section and stub-to-header weld joints are present. This paper is intended to describe the proper procedures developed over years of study that will allow for ASME code quality welds in alloy 740H with matching composition filler metals.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 556-567, October 11–14, 2016,
..., such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers...
Abstract
View Papertitled, Development and Application of T91 Cold Weld Repair Techniques
View
PDF
for content titled, Development and Application of T91 Cold Weld Repair Techniques
The application of cold weld repair techniques in the power industry has been well documented. This type of repair is only considered when a conventional repair (involving post-weld heat treatment) is impracticable or the penalties of time and cost for conventional repair are sufficiently high. A typical cold weld repair in the UK has involved low alloy ferritic steel (½Cr½Mo¼V, 2¼Cr1Mo) components welded with nickel based SMAW consumables or ferritic FCAW consumables. Modified 9Cr steel components have been used in UK power plant since the late 1980’s for a number of applications, such as superheater outlet headers, reheat drums and main steam pipework. The problems associated with this material have also been well documented, particularly premature type IV cracking of welds on creep weakened modified 9Cr steel. RWE Generation UK have developed modified 9Cr cold weld repairs on headers, pipework and tubes. These repairs have been underwritten with extensive testing. This paper will describe the work performed on developing T91 cold weld repairs and where they have been applied on power plant.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 752-761, August 31–September 3, 2010,
... to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when...
Abstract
View Papertitled, Estimates for the Onset of Type IV Cracking in Grade 91 Power Plant Components
View
PDF
for content titled, Estimates for the Onset of Type IV Cracking in Grade 91 Power Plant Components
Grade 91 steel, while increasingly popular in high-temperature power plants for both retrofit and new construction applications, faces significant challenges with Type IV cracking at the outer parent side edge of the weld heat affected zone. This structural integrity issue has led to extensive weld inspection requirements and, in severe cases, the premature replacement of grade 91 retrofit headers before their intended design life. This paper presents a method for estimating Type IV cracking timelines in operating grade 91 components by analyzing crossweld Type IV data to determine when Type IV life deviates from parent life. By combining test results from various temperatures, the method generates a generalized prediction of Type IV life that can be extrapolated to any temperature of interest, providing a practical lower bound estimate for service life of the weakest grade 91 material. This approach, which can be applied to service operating conditions to establish realistic inspection timelines for plant components, has already successfully identified early-stage Type IV cracking in two retrofit headers and is being expanded to additional grade 91 components.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 916-932, August 31–September 3, 2010,
...-forged it at 5:1 and 12:1 reductions, to assess feasibility of the alloy as a wrought advanced stainless steel for potential use as steam headers and piping for A-USC power plant applications. The hot-forged alloy has a recrystallized grain structure 6-9 times finer than the as-cast dendritic structure...
Abstract
View Papertitled, Mechanical Properties and Microstructure of a Wrought Austenitic Stainless Steel for Advanced Fossil Power Plant Applications
View
PDF
for content titled, Mechanical Properties and Microstructure of a Wrought Austenitic Stainless Steel for Advanced Fossil Power Plant Applications
Advanced Ultra-supercritical (A-USC) steam power-plant technology is being developed for better efficiency and lower emissions at 700°C and above, but is based mainly on Ni-based alloys. The ability to include lower-cost alloys with appropriate high-temperature performance should have substantial technological and economic benefits. CF8C-Plus is a cast austenitic stainless steel recently developed for other applications at 600-900°C, which has creep-strength comparable to many solid-solution Ni-based alloys. EPRI and Carpenter Technology produced a 400 lb heat of CF8C-Plus steel and hot-forged it at 5:1 and 12:1 reductions, to assess feasibility of the alloy as a wrought advanced stainless steel for potential use as steam headers and piping for A-USC power plant applications. The hot-forged alloy has a recrystallized grain structure 6-9 times finer than the as-cast dendritic structure, resulting in better strength and impact resistance at room-temperature, and about 20% higher yield-strength (YS) at 760°C, and similar or better ductility compared to the as-cast material. The initial creep-rupture testing at 700-800°C for up to 2000h also indicates similar or better rupture resistance and better creep-ductility for wrought compared to cast material. The next steps needed to test performance of the wrought austenitic stainless steel for extruded headers and piping are discussed.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 969-983, February 25–28, 2025,
... an ex-service grade 91 steel heat in a superheat outlet header for ~89,000 hours of operation at a bulk steam outlet temperature of ~585°C (1,085°F). The header was removed due to extensive damage on the header-side of tube to header connections and at other welded features. The test sample was taken...
Abstract
View Papertitled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part II, Microstructural Observations
View
PDF
for content titled, Creep Ductility in 9Cr Creep Strength Enhanced Ferritic Steels - Part II, Microstructural Observations
The time-dependent behavior of 9Cr creep strength enhanced ferritic (CSEF) steels has long fixated on the creep life recorded in uniaxial constant load creep tests. This focus is a consequence of the need to develop stress allowable values for use in the design by formulae approach of rules for new construction. The use of these simple rules is justified in part by the assumption that the alloys used will invariably demonstrate high creep ductility. There appears to be little awareness regarding the implication(s) that creep ductility has on structural performance when mechanical or metallurgical notches (e.g., welds) are present in the component design or fabricated component. This reduced awareness regarding the role of ductility is largely because low alloy CrMo steels used for very many years typically were creep ductile. This paper focuses on the structural response from selected tests that have been commissioned or executed by EPRI over the last decade. The results of these tests demonstrate unambiguously the importance that creep ductility has on long-term, time-dependent behavior. This is the second part of a two-part paper; Part I reviewed the selected tests and discussed them from a mechanical perspective. The association of performance with specific microstructural features is briefly reviewed in this paper and the remaining gaps are highlighted for consideration among the international community.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
... project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W. A-USC boilers creep rupture strength fabricability...
Abstract
View Papertitled, Verification of Long Term Creep Rupture Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
View
PDF
for content titled, Verification of Long Term Creep Rupture Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 284-295, February 25–28, 2025,
... project scope included fabrication of full-scale superheater / reheater components and subassemblies (including tubes and headers), furnace membrane walls, steam turbine forged rotor, steam turbine nozzle carrier casting, and high temperature steam transfer piping. Materials of construction included...
Abstract
View Papertitled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
View
PDF
for content titled, Final Results of the U.S. Advanced Ultra-Supercritical Component Test Project for 760°C Steam Conditions
A United States-based consortium has successfully completed the Advanced Ultra-Supercritical Component Test (A-USC ComTest) project, building upon a 15-year materials development effort for coal-fired power plants operating at steam temperatures up to 760°C. The $27 million project, primarily funded by the U.S. Department of Energy and Ohio Coal Development Office between 2015 and 2023, focused on validating the manufacture of commercial-scale components for an 800 megawatt power plant operating at 760°C and 238 bar steam conditions. The project scope encompassed fabrication of full-scale components including superheater/reheater assemblies, furnace membrane walls, steam turbine components, and high-temperature transfer piping, utilizing nickel-based alloys such as Inconel 740H and Haynes 282 for high-temperature sections. Additionally, the team conducted testing to secure ASME Code Stamp approval for nickel-based alloy pressure relief valves. This comprehensive effort successfully established technical readiness for commercial-scale A-USC demonstration plants while developing a U.S.-based supply chain and providing more accurate cost estimates for future installations.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 165-176, October 25–28, 2004,
... might degrade due to fabrication operations, and 3) to investigate prototypical manufacturing operations for producing both thick wall components (such as headers) and thin wall components (such as superheaters) from the USC alloys. This paper discusses some of the characteristics of these alloys...
Abstract
View Papertitled, Considerations in Fabricating USC Boiler Components from Advanced High Temperature Materials
View
PDF
for content titled, Considerations in Fabricating USC Boiler Components from Advanced High Temperature Materials
The construction of highly efficient, coal-burning Ultra Supercritical (USC) boiler systems to operate with steam temperatures up to 760°C (1400°F) and with steam pressures up to 35 MPa (5000 psi) will require the use of advanced high temperature, high strength materials. As part of a 5-year project to develop boiler materials for advanced USC power plants, principally funded by the Department of Energy (U.S. DOE No. DE-FG26-01NT41175) and the Ohio Coal Development Office (OCDO No. D-00-20), six alloys have been selected for development and implementation in USC boiler systems. The selected alloys are Haynes 230 (produced by Haynes International), Inconel 740 (produced by Special Metals Corp.), CCA 617 (produced by Krupp VDM GMBH), HR6W, Super 304H, and SAVE 12 (all three produced by Sumitomo Metal Industries). In this project, one of the goals has been to establish boiler fabrication guidelines for the use of these alloys. The principal objectives have been 1) to understand the behavior of these materials when subjected to conventional boiler fabrication processes, 2) to determine the thermomechanical treatments or other actions necessary to restore material properties which might degrade due to fabrication operations, and 3) to investigate prototypical manufacturing operations for producing both thick wall components (such as headers) and thin wall components (such as superheaters) from the USC alloys. This paper discusses some of the characteristics of these alloys, describes the technical approach used to assess their fabricability, and presents some of the results that have thus far been generated in this task effort.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
... superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy...
Abstract
View Papertitled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
View
PDF
for content titled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 837-854, October 25–28, 2004,
... Chemistry Alloy 617, a variant of Inconel 617 that has been dubbed “CCA 617.” The CCA 617 was represented in both thick plate and tubular product forms, but the stainless steel was only available as tubing. Issues that might be encountered in fabricating advanced boiler headers and piping were addressed...
Abstract
View Papertitled, Weldability of Materials for Ultrasupercritical Boiler Applications
View
PDF
for content titled, Weldability of Materials for Ultrasupercritical Boiler Applications
Construction of boilers that can take advantage of the higher efficiencies offered by thermodynamic cycles operating in the ultrasupercritical range will require materials having elevated temperature properties considerably superior to those of the alloys used in more conventional boilers. While many of the materials currently under consideration for ultrasupercritical boiler applications have seen use in other applications, few have been fully investigated using the product forms and section sizes required by high-temperature, high- pressure steam generators. Before any material can be considered truly applicable for use in these advanced plants, the requirements and effects of boiler industry fabrication processes must be explored in addition to determining the properties of the basic alloys. This need was recognized in a materials evaluation program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office and a portion of this program has been devoted to studying the weldability of candidate ultrasupercritical boiler alloys. This paper describes the results of welding trials involving two of these alloys: Super 304H stainless steel and Controlled Chemistry Alloy 617, a variant of Inconel 617 that has been dubbed “CCA 617.” The CCA 617 was represented in both thick plate and tubular product forms, but the stainless steel was only available as tubing. Issues that might be encountered in fabricating advanced boiler headers and piping were addressed while welding the CCA 617 plate with shielded metal arc and submerged arc processes. Similarly, experience working with tubular product forms of both alloys was gained while making butt joints with an orbital gas tungsten arc process. The paper describes the problems presented, the procedures developed, and the basic characteristics of the welds produced.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 140-152, October 3–5, 2007,
... strength. To date, there has been a somewhat limited in-plant experience of their long-term performance, especially with thick section components such as headers and steam pipework. However, judging from earlier experience with lower grade ferritic alloys, and limited experience with these newer materials...
Abstract
View Papertitled, Experience with the Use of P91 Steel and Development of Tools for Component Integrity/Life Assessment
View
PDF
for content titled, Experience with the Use of P91 Steel and Development of Tools for Component Integrity/Life Assessment
Martensitic steel P91 with higher creep strength was first introduced as thick section components in power plants some 18 years ago. However, more recently a number of failures have been experienced in both thick and thin section components and this has given rise to re-appraisal of this steel. Thick section components are generally known to have failed due to Type IV cracking. Furthermore, due to the restructuring of the electricity industry worldwide many of the existing steam plant are now required to operate in cycling mode and this requires the use of materials with high resistance to thermal fatigue . Here high strength P91 is assumed to offer an additional benefit in that the reduced section thickness increases pipework flexibility and reduces the level of through wall temperature gradients in thick section components. Because of this envisaged benefit a number of operators/owners of the existing plant, especially in the UK, have been substituting these new higher strength steels for the older materials, especially when a plant is moved from base load to cyclic operation. There has also been a perceived advantage of higher steam side oxidation resistance of superheater tubes made from high Cr steels. For the Heat Recovery Steam Generators (HRSGs) used in Combined Cycle Gas Turbines (CCGTs) there is a requirement to produce compact size units and thus high strength steels are used to make smaller size components. This paper discusses these issues and compares the envisaged benefits with the actual plant experience and more recent R&D findings. In view of these incidents of cracking and failures it is important to develop life assessment tools for components made from P91 steel. ETD has been working on this through a ‘multi-client project' and this aspect will be discussed in this paper.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 155-166, October 22–25, 2013,
... subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented. Alloy 263 Alloy 617 A-USC plants creep properties low cycle fatigue...
Abstract
View Papertitled, Investigations on Nickel Based Alloys and Welds for A-USC Applications
View
PDF
for content titled, Investigations on Nickel Based Alloys and Welds for A-USC Applications
In several material qualification programs tubes and thick-walled components mainly from Alloy 617 and Alloy 263 were investigated. Results as low cycle fatigue and long term creep behavior of base materials and welds are presented. Numerical models to describe the material behavior have been developed and verified by multiaxial tests. In order to ensure the feasibility of A-USC plants two test loops have been installed in GKM Mannheim – one for tube materials and a new one for thick-walled piping and components. The latter consists of a part with static loading and a part subjected to thermal cycles and is in operation since November 2012. First results of measurements and numerical calculations for a pipe bend (static loading) as well as pipes and a header (thermal cycles) are presented.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 143-155, October 21–24, 2019,
... Abstract Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced...
Abstract
View Papertitled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
View
PDF
for content titled, Influence of Manufacturing Process Parameters on 9-12% Cr Ferritic Steel Performance
Modified 9Cr-1Mo alloy steel has been developed over the last few decades and has since gained wide acceptance in the boiler industry for the production of a variety of pressure-critical components, including tubing, piping and headers. The properties of creep-strength enhanced ferritic steels such as grade 91 are critically dependent on manufacturing parameters such as steelmaking, hot deformation, heat treatment and welding. Since the applications for which this material is used impose strict requirements in terms of resistance, corrosion, and creep behavior, poor process control can severely compromise the service behavior. This work discusses the impact of total deformation during the rolling process, and heat treatment parameters on time-independent and time-dependent properties for grade 91. For this study, two heats with similar chemical composition were produced with different reduction ratios: to which, several normalizing and tempering combinations were applied. For each combination, the microstructure was characterized, including evaluation of segregation by metallographic examination, and analysis of secondary phase precipitates by means of X-ray powder diffraction. Mechanical testing and creep testing were performed. A comparison of results is presented, and recommendations on the optimal process parameters are provided to ensure reliable performance of grade 91 material.
1