Skip Nav Destination
Close Modal
Search Results for
grain boundaries
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 386
Search Results for grain boundaries
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1408-1417, October 21–24, 2019,
... Abstract The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through...
Abstract
View Papertitled, Experimental and Computational Study on <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> and <span class="search-highlight">Grain</span> Interior Precipitation of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
View
PDF
for content titled, Experimental and Computational Study on <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> and <span class="search-highlight">Grain</span> Interior Precipitation of Fe 2 Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels
The precipitation behavior of various phases in austenitic heat-resistant model steels, including the Fe 2 Nb Laves phase (C14 structure) on grain boundaries (GB) and grain interiors (GI), and the Ni 3 Nb metastable γ“ phase and stable δ phase on GI, was investigated through experimental study at different temperatures and thermokinetic calculation. The steel samples were prepared by arc melting followed by 65% cold rolling. Subsequently, the samples were solution treated within the γ single-phase region to control the grain size to approximately 150 μm. Aging of the solution-treated samples was carried out at temperatures ranging from 973 K to 1473 K for up to 3600 hours. Microstructural observations were conducted using FE-SEM, and the chemical compositions of the γ matrix and precipitates of Laves and δ phases were analyzed using EPMA. The precipitation modeling was performed using MatCalc software, utilizing a thermodynamic database constructed by our research group to calculate the chemical potential of each phase. Classical nucleation theory was applied for nucleation, while the SFFK model was employed for the growth and coarsening stages. Distinct phases were defined for grain boundary and grain interior Laves phase, with all precipitates assumed to have spherical morphology in the calculations. The precipitation start time was defined as the time when the precipitate fraction reached 1%. Experimental results indicated that above 973 K, Laves phase nucleation primarily occurred on grain boundaries before extending into the grain interior, with the nose temperature located around 1273 K. To replicate the experimentally determined Time-Temperature-Precipitation (TTP) diagram, interaction parameters among elements were adjusted. Additionally, by introducing lower interfacial energy between the γ matrix and Laves phase, the TTP diagram was successfully reproduced via calculation, suggesting relative stability at the interface.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 391-397, October 21–24, 2019,
... Abstract Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature...
Abstract
View Papertitled, <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
View
PDF
for content titled, <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> Design Using Precipitation of Delta-Ni 3 Nb Phase for Ni-Based Wrought Alloys
Effects of alloying additions of Ti or Mo to a simplified chemical composition of the γ′′-Ni 3 Nb strengthened type Ni-based alloy 718 on the precipitation mode of δ-Ni 3 Nb phase were investigated to aim at designing grain boundaries using the δ phase for raising temperature capability of the γ′′ strengthened Ni-based wrought alloys. In the base alloy of Ni-22Cr-16Fe-3.5Nb, the δ phase precipitated at the grain boundaries of the matrix phase in a platelet form by continuous precipitation mode at temperatures above 1273K (1000°C) but in a lamellar morphology by discontinuous precipitation mode below that temperature. The boundary temperature where the continuous/discontinuous precipitation mode changes was raised by addition of 1 % Ti and lowered by addition of 5% Mo. The increase in the boundary temperature by Ti addition can be considered to have occurred by an increase in the solvus temperature of γ′′ phase. The decrease in the boundary temperature by Mo addition can be interpreted by the reduction of the strain energy caused by the coherent γ′′ precipitates and/or the volume change by the formation of δ phase from the γ/γ′′ phases, which may promote the continuous precipitation with respect to the discontinuous precipitation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1282-1293, October 21–24, 2019,
... multiaxiality (expressed by the Triaxiality Factor, TF) is high. As the creep continues, the shape of the grain boundary becomes simple; that is, close to a straight line. It is known that the grain boundary is fractal. The complexity of the fractal is represented by the fractal dimension. Therefore, we...
Abstract
View Papertitled, Study on Fractal Dimension of <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> as Creep Damage Index of Modified 9Cr-1Mo Steel
View
PDF
for content titled, Study on Fractal Dimension of <span class="search-highlight">Grain</span> <span class="search-highlight">Boundary</span> as Creep Damage Index of Modified 9Cr-1Mo Steel
Type IV creep damage of high chromium steel is a problem in thermal power plants and a method of evaluating remaining life is required. Type IV creep damage is characterized by many voids that initiate in the weldment fine grain heat affected zone (FGHAZ), where the stress multiaxiality (expressed by the Triaxiality Factor, TF) is high. As the creep continues, the shape of the grain boundary becomes simple; that is, close to a straight line. It is known that the grain boundary is fractal. The complexity of the fractal is represented by the fractal dimension. Therefore, we considered that the fractal dimension of the grain boundary in FGHAZ could be an indication of creep damage and studied its change as creep proceeded. First, creep tests were conducted to produce damaged materials, and their fractal dimensions were measured. Next, FEM analysis was conducted to obtain the distribution of the principal stress, TF, and creep strain of the observed surface. The distribution of creep damage was obtained by the time fraction rule. The results of this evaluation confirmed that the fractal dimension of the grain boundary decreases with creep time and that the principal stress and TF affect it.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1395-1401, October 21–24, 2019,
... Abstract The creep behavior of a γ-TiAl based alloy at 1073 K was investigated, examining three different microstructures: equiaxed γ (Eγ), γ/γ fully lamellar (FLγ), and equiaxed γ with α 2 phase on grain boundaries (Eγα 2 ). The aim was to understand the influence of lamellar interfaces...
Abstract
View Papertitled, Effects of γ-TiAl/γ Lamellar Interfaces and <span class="search-highlight">Grain</span>-<span class="search-highlight">Boundary</span> α 2 -Ti 3 Al Phase on Creep of TiAl Based Alloy
View
PDF
for content titled, Effects of γ-TiAl/γ Lamellar Interfaces and <span class="search-highlight">Grain</span>-<span class="search-highlight">Boundary</span> α 2 -Ti 3 Al Phase on Creep of TiAl Based Alloy
The creep behavior of a γ-TiAl based alloy at 1073 K was investigated, examining three different microstructures: equiaxed γ (Eγ), γ/γ fully lamellar (FLγ), and equiaxed γ with α 2 phase on grain boundaries (Eγα 2 ). The aim was to understand the influence of lamellar interfaces and grain boundary α 2 phase on creep behavior. Initially, creep rates were consistent across all specimens upon loading. However, Eγ exhibited a gradual decrease in creep rate compared to Eγα 2 and FLγ. Notably, the minimum creep rate of Eγ was one order of magnitude lower than that of Eγα 2 and FLγ. Conversely, Eγα 2 and FLγ displayed a slight acceleration and the longest rupture strain, albeit with the shortest rupture time compared to Eγ. Upon microstructural analysis of of the creep-test specimens, it was observed that numerous dynamic recrystallized grains (DXGs) and sub-grains formed along grain boundaries and interiors in Eγ, whereas they were limited to the region along grain boundaries in FLγ. In contrast, very few DXGs were formed in Eγα 2 . These findings indicate that γ/γ interfaces inhibit the extension of DXGs into grain interiors, suggesting that the grain boundary α 2 phase effectively suppresses the formation of DXGs.
Proceedings Papers
Effect of Grain-Boundary TCP P(oP56) Phase on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
Free
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1257-1268, February 25–28, 2025,
... Abstract This study investigates the role of grain-boundary precipitates in enhancing creep rupture strength of Ni-based alloys through analysis of Ni-15Cr-15Mo and Ni-15Cr-17Mo (at.%) model alloys. The investigation focused on the “Grain-boundary Precipitation Strengthening (GBPS)” effect from...
Abstract
View Papertitled, Effect of <span class="search-highlight">Grain</span>-<span class="search-highlight">Boundary</span> TCP P(oP56) Phase on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
View
PDF
for content titled, Effect of <span class="search-highlight">Grain</span>-<span class="search-highlight">Boundary</span> TCP P(oP56) Phase on Creep in Ni-Cr-Mo Alloys at Elevated Temperatures
This study investigates the role of grain-boundary precipitates in enhancing creep rupture strength of Ni-based alloys through analysis of Ni-15Cr-15Mo and Ni-15Cr-17Mo (at.%) model alloys. The investigation focused on the “Grain-boundary Precipitation Strengthening (GBPS)” effect from the thermally stable TCP phase, a phenomenon previously observed in Fe-Cr-Ni-Nb austenitic heat-resistant steels. Through multi-step heat treatments, specimens were prepared with varying grain boundary coverage ratios (ρ) of TCP P phase (oP56) and consistent grain-interior hardness from GCP Ni2(Cr, Mo) phase (oP6). In the 15 at.% Mo alloy, specimens with a higher coverage ratio (~80%) demonstrated significantly improved creep performance, achieving nearly four times longer rupture time (3793 h vs. 1090 h) at 300 MPa and 973 K compared to specimens with lower coverage (~35%). However, the 17 at.% Mo alloy showed unexpectedly lower performance despite high coverage ratios, attributed to preferential cavity formation at bare grain boundaries. These findings confirm that GBPS via thermally stable TCP phase effectively enhances creep properties in Ni-based alloys, with grain boundary coverage ratio being more crucial than intragranular precipitation density.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 479-487, October 21–24, 2019,
..., precipitation of M 23 C 6 carbides was observed in both grain boundaries and the grain interior prior to the creep tests. Grain boundary coverage by carbide increased with phosphorus content up to approximately 30 ppm. On the other hand, the amount of M 23 C 6 in the grain interior decreased with phosphorus...
Abstract
View Papertitled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
View
PDF
for content titled, Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys
In this work, the effects of phosphorus addition on the creep properties and microstructural changes of wrought γ’-strengthened Ni-based superalloys (Haynes 282) were investigated, focusing on the effects of carbides precipitation. In an alloy with a phosphorus content of 8 ppm, precipitation of M 23 C 6 carbides was observed in both grain boundaries and the grain interior prior to the creep tests. Grain boundary coverage by carbide increased with phosphorus content up to approximately 30 ppm. On the other hand, the amount of M 23 C 6 in the grain interior decreased with phosphorus content. The results of the creep tests revealed the relationship between the time to rupture and the grain boundary coverage by carbides. The microstructure of the crept specimens showed the existence of misorientation at the vicinity of grain boundaries without carbides, as demonstrated via electron backscattered diffraction (EBSD) analysis. These results suggest that the observed improvement in the time to rupture is due to a grain-boundary precipitation strengthening mechanism caused by grain boundary carbides and that phosphorus content affects the precipitation behavior of M 23 C 6 carbides in the grain interior and grain boundaries. These behaviors were different between alloys with the single addition of phosphorus and alloys with the multiple addition of phosphorus and niobium.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 665-672, October 21–24, 2019,
... elongation and reduction of area decreased with increasing time to rupture at 600°C to 800°C. The reduction of area was lower than 12% after creep rupture for more than 10000h. Creep voids and cracks were observed on grain boundaries in creep ruptured samples. The hardness of head portion of creep ruptured...
Abstract
View Papertitled, Creep Strength and Microstructural Change of 25Cr-20Ni-Nb-N Steel
View
PDF
for content titled, Creep Strength and Microstructural Change of 25Cr-20Ni-Nb-N Steel
Creep properties and microstructural changes of 25Cr-20Ni-Nb-N steel (KA-SUS310J1TB) were investigated. Creep tests were performed under 20MPa to 380MPa at 600°C to 800°C. Time to rupture was from 53.5h to 23950h. At 650°C or higher, creep strength degraded in the long-term. Rupture elongation and reduction of area decreased with increasing time to rupture at 600°C to 800°C. The reduction of area was lower than 12% after creep rupture for more than 10000h. Creep voids and cracks were observed on grain boundaries in creep ruptured samples. The hardness of head portion of creep ruptured samples increased with increasing time to rupture at 600°C to 800°C. The hardness of gauge portion of creep ruptured samples was higher than that of as received sample. However, the hardness of gauge portion does not strongly depend on time to rupture. No precipitates were observed in as received sample. On the other hand, a large number of precipitates were confirmed after creep rupture at 600°C to 800°C. M 23 C 6 , sigma phase, eta nitride and Z phase were detected in creep ruptured samples. The precipitation was confirmed on grain boundaries after short-term creep. The precipitates were also formed inside grains after long-term creep. It was confirmed by optical microscope that the grain boundary seemed to have band-like structure after short-term creep exposure. The Cr depletion zone was detected around grain boundary after short-term creep exposure. The Cr depletion zone can be visible when Cr rich precipitates such as M 23 C 6 and sigma phase are formed on grain boundaries. However, the bandlike structure was not observed after long-term creep exposure because the Cr depletion zone became unclear after long-term creep exposure. Creep voids were formed on grain boundaries and at the interface between precipitates such as M 23 C 6 and sigma phase and matrix.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 645-657, October 3–5, 2007,
... Abstract Research has demonstrated that creep damage in power plant steels is directly linked to grain boundary precipitates, which serve as nucleation sites for cavities and micro-cracks. The formation of M 23 C 6 carbides along grain boundaries creates chromium-depleted zones vulnerable...
Abstract
View Papertitled, Novel Hafnium-Containing Steels for Power Generation
View
PDF
for content titled, Novel Hafnium-Containing Steels for Power Generation
Research has demonstrated that creep damage in power plant steels is directly linked to grain boundary precipitates, which serve as nucleation sites for cavities and micro-cracks. The formation of M 23 C 6 carbides along grain boundaries creates chromium-depleted zones vulnerable to corrosion and significantly reduces creep life due to rapid coarsening. Through combined Monte Carlo grain boundary precipitation kinetics and continuum creep damage modeling, researchers have predicted that increasing the proportion of MX-type particles could enhance creep performance. This hypothesis was tested using hafnium-containing steel, which showed improved creep and corrosion properties in 9% Cr steels. Ion implantation of Hafnium into thin foils of 9 wt% Cr ferritic steel resulted in two new types of precipitates: hafnium carbide (MX-type) and a Cr-V rich nitride (M 2 N). The hafnium carbide particles, identified through convergent beam diffraction and microanalysis, appeared in significantly higher volume fractions compared to VN in conventional ferritic steels. Additionally, Hafnium was found to eliminate M 23 C 6 grain boundary precipitates, resulting in increased matrix chromium concentration, reduced grain boundary chromium depletion, and enhanced resistance to intergranular corrosion cracking.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 181-189, October 11–14, 2016,
... very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed...
Abstract
View Papertitled, Effects of Trace Elements on Creep Properties of Nickel-Iron Base Superalloy
View
PDF
for content titled, Effects of Trace Elements on Creep Properties of Nickel-Iron Base Superalloy
The aim of this work was to reveal the effects of trace elements on the creep properties of nickel-iron base superalloys, which are the candidate material for the large components of the advanced-ultrasupercritical (A-USC) power generation plants. High temperature tensile and creep properties of forged samples with seven different compositions were examined. No significant differences were observed in the creep rate versus time curves of the samples, of which contents of magnesium, zirconium, manganese and sulfur were varied. In contrast, the curves of phosphorus-added samples showed very small minimum creep rates compared to the other samples. The creep rupture lives of phosphorus-added samples were obviously longer than those of the other samples. Microstructure observation in the vicinity of grain boundaries of phosphorus-added samples after aging heat treatment revealed that there were fine precipitates consisting of phosphorus and niobium at the grain boundaries. The significant suppression of the creep deformation of phosphorus-added sample may be attributed to the grain boundary strengthening caused by the fine grain boundary precipitates.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 338-354, February 25–28, 2025,
..., size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void...
Abstract
View Papertitled, Impact of Three Additive Manufacturing Techniques on Microstructure and Creep Damage Development in Alloy 718
View
PDF
for content titled, Impact of Three Additive Manufacturing Techniques on Microstructure and Creep Damage Development in Alloy 718
Inconel 718 is a nickel-based superalloy known for its excellent combination of high-temperature strength, corrosion resistance, and weldability. Additive Manufacturing (AM) has revolutionized traditional manufacturing processes by enabling the creation of complex and customized components. In this work, three prominent AM techniques: Laser-Based Powder Bed Fusion (PBF), Wire Direct Energy Deposition (DED), and Binder Jet (BJ) processes were explored. A thorough metallographic analysis and comparison of samples was conducted after short-term creep testing originating from each of the three aforementioned techniques in addition to wrought material. Detailed electron microscopy unveiled equiaxed grains in both BJ and wrought samples while PBF samples displayed elongated finer grain structures in the build direction, characteristic of PBF. The DED samples revealed a more bimodal grain distribution with a combination of smaller equiaxed grains accompanied by larger more elongated grains. When assessing the three processes, the average grain size was found to be larger in the BJ samples, while the PBF samples exhibited the most significant variation in grain and sub-grain size. Number density, size, and shape of porosity varied between all three techniques. Post-creep test observations in PBF samples revealed the occurrence of wedge cracking at the failure point, accompanied by a preference for grain boundary creep void formation while BJ samples exhibited grain boundary creep void coalescence and cracking at the failure location. In the DED samples, void formation was minimal however, it seemed to be more prevalent in areas with precipitates. In contrast, the wrought sample showed void formation at the failure site with a preference for areas with primary carbide formation. Despite BJ samples demonstrating similar or even superior rupture life compared to other AM techniques, a noteworthy reduction in rupture ductility was observed. While a coarse, uniform grain size is generally linked to enhanced creep resistance and rupture life, the combination of pre-existing voids along grain boundaries and the formation of new voids is hypothesized to accelerate rapid fracture, resulting in diminished ductility. This research shows careful consideration is needed when selecting an AM technology for high- temperature applications as creep behavior is sensitive to the large microstructural variations AM can introduce.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 71-79, October 21–24, 2019,
... in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just...
Abstract
View Papertitled, Microstructural Evaluation in Heat-Affected Zone of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel
View
PDF
for content titled, Microstructural Evaluation in Heat-Affected Zone of 9Cr-3W-3Co-Nd-B Heat-Resistant Steel
A newly developed ferritic heat-resistant steel; 9Cr-3W-3Co-Nd-B steel has higher creep rupture strength both in the base metal and welded joints than the conventional high-Cr ferritic heat-resistant steels. The creep rupture strengths of 9Cr-3W-3Co-Nd-B steel welded joints were below the lower limit of the base metal in long-term creep stage more than 20,000 hours. The creep rupture position was heat-affected zone (HAZ) from 1.0 to 1.5 mm apart from the fusion line on the welded joint specimen ruptured at 34,966 hours. The equiaxed subgrains and coarsened precipitates were observed in HAZ of the ruptured specimen. In order to clarify the creep fracture mechanism of the welded joints, the microstructures of HAZ were simulated by heat cycle of weld, then observed by EBSD analysis. Fine austenite grains formed along the prior austenite grain boundaries in the material heated just above A C3 transformation temperature, however there were no fine grains such as conventional steel welded joints. The prior austenite grain boundaries were unclear in the material heated at 1050 °C. The creep rupture life of the material heated at just above A C3 transformation temperature exceeded the lower limit of base metal and there was no remarkable degradation, although it was shorter than the other simulated materials. It is, therefore, concluded that the creep fracture of 9Cr-3W-3Co-Nd-B steel welded joint in long-term stage occurred at HAZ heated at from just above A C3 transformation temperature to 1050 °C. It is speculated that the fine austenite grains formed along the prior austenite grain boundaries and inhomogeneous microstructures cause the coarsening precipitates and recovery of lath structure during long-term creep deformation.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 592-602, October 21–24, 2019,
... conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain...
Abstract
View Papertitled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
View
PDF
for content titled, Creep Damage Assessment of 47Ni-23Cr-23Fe-7W Alloy
In order to establish a creep damage assessment method for 47Ni-23Cr-23Fe-7W (HR6W), which is a candidate material of A-USC, microstructure observation of creep interrupted specimens and ruptured specimen was conducted, and the creep damage process was examined. Creep tests were conducted under conditions of 800°C, 70 MPa, 700°C, and 100 MPa. For creep damage assessment, an optical microscope was used for replicas sampled from the outer surface of specimens, and crack ratio at grain boundaries was assessed. The results indicated that creep voids and cracks were initiated at grain boundaries from about 0.35 of creep life ratio, and crack ratio increased drastically after creep life ratio of 0.65. This crack ratio was almost the same regardless of the specimen shape Therefore, the method to assess crack ratio using replicas is considered to be an effective method for creep damage assessment of HR6W. An increase in the crack ratio due to an increase in creep life ratio showed the same trend as the change in elongation of creep interrupted specimens. Microstructure observations were conducted with interrupted specimens using SEM-ECCI (Electron Channeling Contrast Imaging) in order to clarify the cause of acceleration creep. The results showed that sub-boundary developed significantly near grain boundaries, which indicates that sub-boundary development may cause acceleration.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1436-1445, October 21–24, 2019,
... constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni...
Abstract
View Papertitled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on Phase Diagram Study at Elevated Temperature
View
PDF
for content titled, Novel Microstructure Design Approach Using TCP and GCP in Ni-Cr-M Ternary Systems Based on Phase Diagram Study at Elevated Temperature
Strengthening of Ni-based superalloys is in principle designed using GCP (Geometrically Close-packed phase) of Ni 3 Al-γ' (L1 2 ). However, game-changing microstructural design principle without relying on γ' phase will be needed for further development of the alloys. We are currently constructing a novel microstructure design principle, using thermodynamically stable TCP (Topologically Close-packed phase) for grain boundaries, together with GCP other than γ' phase for grain interiors, based on grain boundary precipitation strengthening (GBPS) mechanism. One of the promising systems is Ni-Cr-Mo ternary system, where TCP of NiMo (oP112) phases, μ (hR13) and P (oP56), together with GCP of Ni 3 Mo (oP8) and Ni 2 Cr (oP6) exists. In this study, thus, phase equilibria among A1 (fcc)/TCP/GCP phases in Ni-Cr-Mo and Ni-Cr-W systems have been examined at temperature range from 973 K to 1073 K, based on experiment and calculation. In Ni-Cr-Mo system, Ni 2 (Cr, Mo) with oP6 Pearson symbol, which is stable at about 873 K in Ni-Cr binary system, is formed to exist even at 1073 K. oP6 phase is coherently formed in A1 matrix with a crystallographic orientation of {110} A1 // (100) oP6 , <001>Α1 // [010]oP6, indicating GCP at composition range around Ni-15Cr-15Mo as island. In Mo-rich region there is Α1/NiMo/oP6 three-phase coexisting region, whereas another three-phase coexisting region of Α1/P/oP6 exists in Cr-rich region. Based on vertical section, it is possible to design microstructure with TCP at grain boundaries, together with oP6 phase within grain interiors by two-step heat treatment.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1299-1312, October 25–28, 2004,
... preferentially on prior austenite grain boundaries and hardly visible on the sub-grain boundaries. In the steel B2 doped with 100 ppm B, boron was densely distributed on prior austenite grain- and sub-grain boundaries as well as within martensite laths. Quantitative TEM metallography and boron trace...
Abstract
View Papertitled, Transmission Electron Microscopy and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
View
PDF
for content titled, Transmission Electron Microscopy and Boron Trace Autoradiography Investigation of Precipitates in Creep Deformed 9% Chromium Steels
The microstructures of two 9% chromium steels, P92 (30 ppm B) and B2 (100 ppm B), after heat treatment and after long-term creep deformation at 600°C were quantitatively investigated by means of transmission electron microscopy and boron trace autoradiography. The aim of the study was to show the boron distribution and identify the influence of boron on precipitation processes taking place in both steels during long-term creep exposure. The incorporation of boron into the M 23 C 6 precipitates in both steels was demonstrated. In P92 steel (30 ppm B), boron was distributed preferentially on prior austenite grain boundaries and hardly visible on the sub-grain boundaries. In the steel B2 doped with 100 ppm B, boron was densely distributed on prior austenite grain- and sub-grain boundaries as well as within martensite laths. Quantitative TEM metallography and boron trace autoradiography investigation showed that boron retarded the growth of M 23 C 6 by forming borocarbides M 23 (C, B) 6 , thereby significantly improving the creep rupture strength of boron doped 9% chromium steels.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 546-557, October 21–24, 2019,
... of alloy C-263. Essential root cause is the decoration of grain boundaries with carbides which drastically influences creep crack initiation and growth. This results in significant differences for allowable critical flaw sizes and thus, the potential use of the candidate material. On a first generation...
Abstract
View Papertitled, Creep and Creep Crack Behavior of Alloy C-263 Used for Thick-Walled Components—An Update
View
PDF
for content titled, Creep and Creep Crack Behavior of Alloy C-263 Used for Thick-Walled Components—An Update
Detailed knowledge of the creep and creep crack behavior is essential for a safe operation of thick-walled components in thermal power plants. High mechanical loads and temperatures of more than 700 °C often require the application of nickel-based alloys, e.g. alloy C-263. Unfortunately, manufacturing and non-destructive evaluation (NDE) of thick-walled components (> 50 mm) made of nickel-based alloys are quite challenging. Tolerable critical flaw sizes, experimentally validated for long service durations, play an important role in the quality assurance of such components. It is commonly accepted that manufacturing parameters, e.g. heat treatment procedures, have a significant influence on creep ductility and time-dependent crack behavior. By means of adjusting the process parameters, the ductility and the creep life of notched specimen can be significantly improved in the case of alloy C-263. Essential root cause is the decoration of grain boundaries with carbides which drastically influences creep crack initiation and growth. This results in significant differences for allowable critical flaw sizes and thus, the potential use of the candidate material. On a first generation of alloy C-263 “G1”, a dense population of carbides on the grain boundaries was found, which resulted in an inadmissible creep crack behavior. The resulting critical flaw sizes were only a few tenths of a millimeter. On a second generation “G2”, the grain boundary occupation was positively influenced, so that a satisfactory creep crack behavior could be found. The critical flaw sizes are in the order of one millimeter or more. A critical or impermissible material behavior under creep conditions can be demonstrated by testing smooth and notched round specimens. For example, the first generation “G1” notched round specimens fails earlier than the smooth round specimens, indicating notch sensitivity. On the second generation “G2”, however, a notch insensitivity was found. The critical defect sizes can be determined by a method that takes into account a simultaneous examination of the crack tip situation and the ligament situation.
Proceedings Papers
Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 418-428, October 11–14, 2016,
.... In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given...
Abstract
View Papertitled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Properties and Microstructures in HR6W (44Ni-23Cr-7W) for A-USC Boilers
Seeking to reduce CO 2 emissions and improve power generation efficiency, a project to develop a 700°C A-USC (advanced ultra super critical) power plant has been under way in Japan since 2008. HR6W (44Ni-23Cr-7W) is a candidate material for application in the maximum temperature areas of A-USC boilers. In this study, the creep rupture properties of plastic deformed material were investigated in comparison with those of solution treated material, in order to clarify the capability of HR6W as a material for use in A-USC plants. The creep strength of 20% pre-strained HR6W was found to increase substantially as compared with the solution treated material. 20% pre-strained material is in a state where high dislocation density has been introduced by plastic forming strain, with M 23 C 6 and Laves phase precipitating preferentially by dislocation diffusion from the early stages of creep. In particular, since high dislocation density is accumulated in connection with creep deformation near the grain boundaries, precipitation is accelerated and the grain boundaries are covered with M 23 C 6 from the early stages of creep. Then, even though the intragranular precipitate density decreases, given that the fraction of grain boundaries affected by precipitation is maintained in a high state, it is presumed that a high density of dislocation is maintained in the long-term region. This was considered to be the reason why the creep rupture strength of the 20% pre-strained material increased so remarkably in comparison with the solution treated material.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1352-1362, October 22–25, 2013,
... is to intentionally increase the area fraction of Laves phase on grain boundaries (ρ). The specimen with ρ = 43% (base steel pre-aged at 1073 K/240 h) exhibits the rupture life of 262 h, whereas the rupture life of the specimen with higher ρ of 80% (B-doped steel pre-aged at 1073 K/240 h) is 833h, which is about...
Abstract
View Papertitled, Creep of the Novel Austenitic Heat Resistant Steel of Fe-20Cr-30Ni-2Nb under Steam Atmosphere at 1073 K
View
PDF
for content titled, Creep of the Novel Austenitic Heat Resistant Steel of Fe-20Cr-30Ni-2Nb under Steam Atmosphere at 1073 K
In this study, we have examined the creep of a novel austenitic heat resistant steel of Fe-20Cr- 30Ni-2Nb (at.%) steel at 1073K in steam and air atmospheres. Our studied steels were Fe-20Cr- 30Ni-2Nb (base steel) and that with 0.03 at. %B (B-doped steel) . The addition of boron is to intentionally increase the area fraction of Laves phase on grain boundaries (ρ). The specimen with ρ = 43% (base steel pre-aged at 1073 K/240 h) exhibits the rupture life of 262 h, whereas the rupture life of the specimen with higher ρ of 80% (B-doped steel pre-aged at 1073 K/240 h) is 833h, which is about three times longer than that of the specimen with ρ = 43%. The specimen with ρ = 80% exhibits smaller creep rate than those with lower ρ than 43% in the entire creep stage. In addition, all specimens show the creep rupture strain of about 60%. The creep rupture life is almost same to that tested under air, whereas the creep rupture strain is slightly smaller (a few percent) than that under air. In the surface of the creep ruptured specimen in steam, the intergranular oxides associated with voids or cavities are often present and grow along grain boundaries to over 100 μm in depth. The intergranular oxidation occurs more extensively in steam rather than air. These results demonstrate that stable Fe 2 Nb Laves phase on grain boundary could increase the creep resistance of the present steel at 1073K without ductility loss in steam as well as air, resulting in the pronounced extension of rupture life. The intergranular oxidation accelerated by steam would not give a serious effect on the creep properties of the present steel below 103 hours in rupture life.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 470-478, October 21–24, 2019,
... fracture to fracture around large PPB with an increment of strain rate. In addition, samples ruptured at higher temperature showed grain boundary fracture regardless of strain rate. On the other hand, the CW material showed good deformability with chisel point fracture in the entire temperature and strain...
Abstract
View Papertitled, Effect of Prior Particle <span class="search-highlight">Boundary</span> on Deformability of Powder Processed Turbine Disk Alloy
View
PDF
for content titled, Effect of Prior Particle <span class="search-highlight">Boundary</span> on Deformability of Powder Processed Turbine Disk Alloy
The powder metallurgy (P/M) process has been applied to a high strength turbine disk alloy. It is known that P/M alloys show characteristic microstructures such as prior powder boundaries (PPB) compared to microstructures of conventional cast and wrought (CW) alloys. High temperature tensile tests were conducted on CW and P/M processed alloy720Li in order to reveal the effect of temperature and strain rate on deformation behavior and to demonstrate the effect of microstructure derived from P/M process on deformability. The fracture mode of the P/M material changed from grain interior fracture to fracture around large PPB with an increment of strain rate. In addition, samples ruptured at higher temperature showed grain boundary fracture regardless of strain rate. On the other hand, the CW material showed good deformability with chisel point fracture in the entire temperature and strain rate condition range. In the P/M material, melting of grain boundaries occurred at super solvus temperature conditions. Large PPB acts as nucleation site of voids at higher strain rate conditions. Precipitation strengthening by γ’ phase degrades deformability at sub solvus temperature conditions. However, deformability near the solvus temperature and low strain rate condition in as HIPed P/M material increased with fine grain size distribution in spite of the presence of large grains resulting from PPB.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 984-993, February 25–28, 2025,
... and quantified using electron beam scattered diffraction (EBSD) generated inverse poll figures (IPF), grain surface area and grain aspect ratio distribution, grain orientation spread (GOS), kernel average misorientation (KAM), and grain boundary (GB) length density. From the analysis, GOS was determined...
Abstract
View Papertitled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium Nickel Alloy Groove Welds
View
PDF
for content titled, Quantification of Dynamic Recrystallization and Its Relation to Imposed Mechanical Energy and Ductility Dip Cracking in High-Chromium Nickel Alloy Groove Welds
Ductility dip cracking (DDC) is known to occur in highly restrained welds and structural overlays made using high chromium (Cr) nickel (Ni) based filler metals in the nuclear power generation industry, resulting in costly repairs and reworks. Previous work explored the role of mechanical energy imposed by the thermo-mechanical cycle of multipass welding on DDC formation in a highly restrained Alloy 52 filler metal weld. It was hypothesized that imposed mechanical energy (IME) in the recrystallization temperature range would induce dynamic recrystallization (DRX), which is known to mitigate DDC formation. It was not shown however that IME in the recrystallization temperature range (IMERT) induced DRX. The objective of the work is to discern if a relationship between IMERT and DRX exists and quantify the amount of DRX observed in a filler metal 52 (FM-52) groove weld. DRX was analyzed and quantified using electron beam scattered diffraction (EBSD) generated inverse poll figures (IPF), grain surface area and grain aspect ratio distribution, grain orientation spread (GOS), kernel average misorientation (KAM), and grain boundary (GB) length density. From the analysis, GOS was determined to be an unsuitable criterion for quantifying DRX in multipass Ni-Cr fusion welds. Based on the observed criteria, higher IMERT regions correlate to smaller grain surface area, larger grain boundary density, and higher grain aspect ratio, which are all symptoms of DRX. High IMERT has a strong correlation with the symptoms DRX, but due to the lack of observable DRX, creating a threshold for DRX grain size, grain aspect ratio, and GB density is not possible. Future work will aim to optimize characterization criteria based on a Ni-Cr weld with large presence of DRX.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 673-684, October 21–24, 2019,
... on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both...
Abstract
View Papertitled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
View
PDF
for content titled, Study on the Long-Term Performance of Super 304H Pipe in Superheater of Ultra Supercritical 1000 MW Power Unit
The long-term performance of superheater super 304h tube during the normal service of an ultra-supercritical 1000mw thermal power unit was tracked and analyzed, and the metallographic structure and performance of the original tube sample and tubes after 23,400h, 56,000h, 64,000 h, 70,000 h and 80,000 h service were tested. The results show that the tensile strength, yield strength and post-break elongation meet the requirements of ASME SA213 S30432 after long-term service, but the impact toughness decreases significantly. The metallographic organization is composed of the original complete austenite structure and gradually changes to the austenite + twin + second phase precipitates. With the extension of time, the number of second phases of coarseness in the crystal and the crystal boundary increases, and the degree of chain distribution increases. The precipitation phase on the grain boundary is dominated by M 23 C 6 , and there are several mx phases dominated by NbC and densely distributed copper phases in the crystal. The service environment produces a high magnetic equivalent and magnetic induction of the material, the reason is that there are strips of martensite on both sides of the grain boundary, and the number of martensite increases with the length of service.
1