1-20 of 232

Search Results for gas turbines

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 771-782, October 21–24, 2019,
... Abstract Key components within gas turbines, such as the blades, can be susceptible to a range of degradation mechanisms, including hot corrosion. Hot corrosion type mechanisms describe a sequence of events that include the growth and fluxing of protective oxide scales followed...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
... Abstract Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... Abstract Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 259-269, February 25–28, 2025,
... Abstract Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade...
Proceedings Papers

AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 850-871, August 31–September 3, 2010,
...), nano­coatings are under development for application in steam and gas turbines to mitigate the adverse effects of PE and LPE on rotating blades and stationary vanes. Based on a thorough study of the available information, most promising coatings such as nano-structured titanium silicon carbo-nitride (TiSiCN...
Proceedings Papers

AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 447-470, October 3–5, 2007,
... Abstract Erosion from solid and liquid particles in gas turbine and steam turbine compressors degrades efficiency, increasing downtime and operating costs. Conventional erosion-resistant coatings have temperature and durability limitations. Under an Electric Power Research Institute (EPRI...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 281-292, October 22–25, 2013,
... components with more advanced materials and more complex manufacturing processes. This paper reports about experiences in the fabrication of forged components for gas and steam turbines followed by achievable mechanical properties and ultrasonic detectability results. The materials are the creep resistant...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... Abstract Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1033-1043, February 25–28, 2025,
... Abstract For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
... Abstract Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 766-783, February 25–28, 2025,
... Abstract Ni-base superalloys used for hot section hardware of gas turbine systems experience thermomechanical fatigue (TMF), creep, and environmental degradation. The blades and vanes of industrial gas turbines (IGTs) are made from superalloys that are either directionally-solidified (DS...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 821-829, February 25–28, 2025,
... Abstract Hydrogen as a clean fuel is increasingly being used to propel gas turbines and to power combustion engines. Metallic materials including Ni-based alloys are commonly used in conventional gas turbines and combustion engines. However, hydrogen may cause embrittlement in these materials...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 559-574, October 25–28, 2004,
... for application up to 610°C (COST Rotor E). From this steel, Saarschmiede produces high-pressure rotor shafts and gas turbine discs. To meet ever-increasing steam temperatures, a modified steel type with elevated boron content was developed, and pilot rotors have been manufactured. For ingot manufacturing of high...
Proceedings Papers

AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... Abstract In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 552-558, October 25–28, 2004,
... producing nickel and cobalt-base alloy forgings for applications like aircraft engines, aerospace, land-based gas turbines, and offshore. This paper reports on the manufacturing and testing of large-section forgings made from candidate nickel-base alloys like 617 and 625 for high-pressure/intermediate...
Proceedings Papers

AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 213-223, October 11–14, 2016,
... Abstract Modern polycrystalline Ni-base superalloys for advanced gas turbine engines have been a key component that has contributed to technological advances in propulsion and power generation. As advanced turbine engine designs are beginning to necessitate the use of materials with temperature...
Proceedings Papers

AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 506-519, October 25–28, 2004,
... temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings...
Proceedings Papers

AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... Abstract MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys...
Proceedings Papers

AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, February 25–28, 2025,
... Abstract Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its...