Skip Nav Destination
Close Modal
Search Results for
gas turbines
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 232
Search Results for gas turbines
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 771-782, October 21–24, 2019,
... Abstract Key components within gas turbines, such as the blades, can be susceptible to a range of degradation mechanisms, including hot corrosion. Hot corrosion type mechanisms describe a sequence of events that include the growth and fluxing of protective oxide scales followed...
Abstract
View Papertitled, Modelling Hot Corrosion Damage in Industrial <span class="search-highlight">Gas</span> <span class="search-highlight">Turbines</span>
View
PDF
for content titled, Modelling Hot Corrosion Damage in Industrial <span class="search-highlight">Gas</span> <span class="search-highlight">Turbines</span>
Key components within gas turbines, such as the blades, can be susceptible to a range of degradation mechanisms, including hot corrosion. Hot corrosion type mechanisms describe a sequence of events that include the growth and fluxing of protective oxide scales followed by the degradation of the underlying coating/alloy; this can significantly reduce component lifetimes. To better understand the progress of this type of damage mechanism, a model of hot corrosion progression with both time and corrosive deposit flux is presented for IN738LC and compared to experimental test data collected at 700 °C for four different deposit fluxes. One approach to the interpolation of model parameters between these four fluxes is illustrated. Of particular importance is that the model accounts for the statistical variation in metal loss though the use of Weibull statistics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 783-794, October 21–24, 2019,
... Abstract Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation...
Abstract
View Papertitled, Component Level Hot Corrosion and Deposit Modeling for Large <span class="search-highlight">Gas</span> <span class="search-highlight">Turbines</span>
View
PDF
for content titled, Component Level Hot Corrosion and Deposit Modeling for Large <span class="search-highlight">Gas</span> <span class="search-highlight">Turbines</span>
Modern gas turbines are operated with fuels that are very clean and within the allowances permitted by fuel specifications. However, the fuels that are being considered contain vanadium, sulfur, sodium and calcium species that could significantly contribute to the degradation of components in hot gas flow path. The main potential risk of material degradation from these fuels is “hot corrosion” due to the contaminants listed above combined with alkali metal salts from ambient air. Depending on the temperature regime hot corrosion can damage both TBC coatings and bond coat/substrate materials. Deposit-induced or hot corrosion has been defined as “accelerated oxidation of materials at elevated temperatures induced by a thin film of fused salt deposit”. For the initiation of hot corrosion, deposition of the corrosive species, e.g. vanadates or sulfates, is necessary. In addition to the thermodynamic stability, the condensation of the corrosive species on the blade/vane material is necessary to first initiate and then propagate hot corrosion. Operating temperatures and pressures both influence the hot corrosion damage. The temperature ranges over which the hot corrosion occurs depend strongly on following three factors: deposit chemistry, gas constituents and metal alloy (or bond coating/thermal barrier coating) composition. This paper reports the activities involved in establishing modeling and simulation followed by testing/characterization methodologies in relevant environments to understand the degradation mechanisms essential to assess the localized risk for fuel flexible operation. An assessment of component operating conditions and gas compositions throughout the hot gas paths of the gas turbines, along with statistical materials performance evaluations of metal losses for particular materials and exposure conditions, are being combined to develop and validate life prediction methods to assess component integrity and deposition/oxidation/corrosion kinetics.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 1069-1078, October 21–24, 2019,
... Abstract Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air...
Abstract
View Papertitled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for <span class="search-highlight">Gas</span> <span class="search-highlight">Turbine</span> Transition Pieces
View
PDF
for content titled, Study on GTAW Welded Joint of Nimonic 263 Alloy after Aging at 750℃ for <span class="search-highlight">Gas</span> <span class="search-highlight">Turbine</span> Transition Pieces
Nimonic 263 alloy was selected for gas turbine combustor transition piece due to its excellent high temperature mechanical performance. In present work, Nimonic 263 alloy plate with thickness of 5mm was welded using 263 filler metal by GTAW, then post weld heat treatment of 800℃/8h/air cool was carried out. The hardness and impact toughness of welded joints were measured, and the microstructure evolution after aging at 750℃ for 3000h was investigated by scanning electron microscopy(SEM). The results show that, during the aging process, the hardness of weld metal increases firstly and then decreases. The impact toughness decreases significantly at first and then increase. Furthermore, some fluctuations can be detected in hardness and impact toughness after long-term thermal exposure. The significant decrease in the impact toughness of the aged welded joints mainly results from the precipitation of η phase around grain boundary and intergranular MC phase. The hardness of weld metal increases due to the precipitation of more carbides and γ′ phase after 1000h aging, then decreases owing to the growth of γ′ phase after 3000h aging.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 259-269, February 25–28, 2025,
... Abstract Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade...
Abstract
View Papertitled, Life Extension of <span class="search-highlight">Gas</span> <span class="search-highlight">Turbine</span> Blades Made from Nickel-Based Superalloys
View
PDF
for content titled, Life Extension of <span class="search-highlight">Gas</span> <span class="search-highlight">Turbine</span> Blades Made from Nickel-Based Superalloys
Gas turbine blades made from nickel-based superalloys, valued for their high temperature stability and creep resistance, undergo various forms of microstructural degradation during extended service at elevated temperatures that can ultimately lead to blade failure. To extend blade and turbine rotor life, Sulzer has developed evaluation and rejuvenation processes that include microstructural assessment and stress rupture testing of specimens from service-exposed blades. While stress rupture testing presents certain limitations and challenges in evaluating material condition, Sulzer has successfully rejuvenated hundreds of gas turbine blade sets across multiple superalloy types, including GTD 111, IN 738 LC, and U 500, demonstrating the effectiveness of heat treatment rejuvenation in improving microstructure and mechanical properties of service-degraded components.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 850-871, August 31–September 3, 2010,
...), nanocoatings are under development for application in steam and gas turbines to mitigate the adverse effects of PE and LPE on rotating blades and stationary vanes. Based on a thorough study of the available information, most promising coatings such as nano-structured titanium silicon carbo-nitride (TiSiCN...
Abstract
View Papertitled, Nano-Structured Erosion Resistant Coatings for <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbines</span>
View
PDF
for content titled, Nano-Structured Erosion Resistant Coatings for <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbines</span>
Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components and lead to premature failures, business loss and rapier costs to power plant owners and operators. Under a program funded by the Electric Power Research Institute (EPRI), nanocoatings are under development for application in steam and gas turbines to mitigate the adverse effects of PE and LPE on rotating blades and stationary vanes. Based on a thorough study of the available information, most promising coatings such as nano-structured titanium silicon carbo-nitride (TiSiCN), titanium nitride (TiN) and multilayered nano coatings were selected. TurboMet International (TurboMet) teamed with Southwest Research Institute (SwRI) with state-of-the-art nano-technology coating facilities with plasma enhanced magnetron sputtering (PEMS) method to apply these coatings on various substrates. Ti-6V-4Al, 12Cr, 17-4PH, and Custom 450 stainless steel substrates were selected based on the current alloys used in gas turbine compressors and steam turbine blades and vanes. Coatings with up to 30 micron thickness have been deposited on small test coupons. These are extremely hard coatings with good adhesion strength and optimum toughness. Tests conducted on coated coupons by solid particle erosion (SPE) and liquid droplet erosion (LDE) testing indicate that these coatings have excellent erosion resistance. The erosion resistance under both SPE and LDE test conditions showed the nano-structured coatings have high erosion resistance compared to other commercially produced erosion resistance coatings. Tension and high-cycle fatigue test results revealed that the hard nano-coatings do not have any adverse effects on these properties but may provide positive contribution.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 447-470, October 3–5, 2007,
... Abstract Erosion from solid and liquid particles in gas turbine and steam turbine compressors degrades efficiency, increasing downtime and operating costs. Conventional erosion-resistant coatings have temperature and durability limitations. Under an Electric Power Research Institute (EPRI...
Abstract
View Papertitled, Nano-Structured Erosion Resistant Coatings for <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbines</span>
View
PDF
for content titled, Nano-Structured Erosion Resistant Coatings for <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbines</span>
Erosion from solid and liquid particles in gas turbine and steam turbine compressors degrades efficiency, increasing downtime and operating costs. Conventional erosion-resistant coatings have temperature and durability limitations. Under an Electric Power Research Institute (EPRI) project, ultra-hard nano-coatings (~40 microns thick) were developed using Plasma Enhanced Magnetron Sputtering (PEMS). In Phase I, various coatings—including TiSiCN nanocomposites, stellite variants, TiN monolayers, and multi-layered Ti-TiN and Ti-TiSiCN—were deposited on turbine alloys (Ti-6Al-4V, 17-4 PH, Custom-450, and Type 403 stainless steel) for screening. Unlike conventional deposition methods (APS, LPPS, CVD, PVD), PEMS employs high-current-density plasma and heavy ion bombardment for superior adhesion and microstructure density. A novel approach using trimethylsilane gas successfully produced TiSiCN nanocomposites. Stellite coatings showed no erosion improvement and were discontinued, but other hard coatings demonstrated exceptional erosion resistance—up to 25 times better than uncoated substrates and 20 times better than traditional nitride coatings. This paper details the deposition process, coating properties, adhesion tests, and characterization via SEM-EDS, XRD, nanoindentation, and sand erosion tests.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 281-292, October 22–25, 2013,
... components with more advanced materials and more complex manufacturing processes. This paper reports about experiences in the fabrication of forged components for gas and steam turbines followed by achievable mechanical properties and ultrasonic detectability results. The materials are the creep resistant...
Abstract
View Papertitled, <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbine</span> Forgings for High Efficiency Fossil Power Plants
View
PDF
for content titled, <span class="search-highlight">Gas</span> and Steam <span class="search-highlight">Turbine</span> Forgings for High Efficiency Fossil Power Plants
Sufficient available energy in combination with lowest environmental pollution is a basic necessity for a high standard of living in every country. In order to guarantee power supply for future generations it is necessary to use fossil fuels as efficient as possible. This fact calls for the need of power plants with improved technologies to achieve higher efficiency combined with reduced environmental impact. In order to realize this goal it is not only a challenge for power station manufacturers, but also for manufacturers of special steels and forgings, who have to produce improved components with more advanced materials and more complex manufacturing processes. This paper reports about experiences in the fabrication of forged components for gas and steam turbines followed by achievable mechanical properties and ultrasonic detectability results. The materials are the creep resistant martensitic Cr steels developed in the frame of the European Cost research programme. Whereas Boron containing 10% Cr steels are suitable for steam temperatures of 625°C and slightly higher, Ni-based alloys shall be used for temperatures of 700°C and above. One pilot rotor forging, representing a HP-rotor for welded construction, has been manufactured out of alloy Inconel 625 within the frame of the European Thermie project AD700.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1269-1278, February 25–28, 2025,
... Abstract Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards...
Abstract
View Papertitled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
View
PDF
for content titled, Rejuvenation and Life Assessment of IN 738 Blades after Long-Term Service
Gas turbine blades are operated in a high temperature and a high pressure. In order to cope with that harsh condition, the blades are made of Nickel based superalloys which show excellent performance in such environment. Manufacturers of the blades usually provide the standards for the blade inspection and replacement. According to their guide, the blades are replaced after 3 times of operations and 2 times of refurbishments. Howsoever, purchase the new blades is always costly and burdensome to the power plant owners hence, the assessment of the blade lifespan and the rejuvenation of the degraded blades are indeed crucial to them. In this study, the optimal rejuvenation conditions for gas turbine blades were derived and verified. In addition to that, the creep durability was evaluated based on the actual blade inspection interval. LCF tests have been carried out on the rejuvenated blade and the result was compared with the fatigue life of the new blades. In order to secure the safety of the rejuvenated blade during operation, a heat flow analysis was performed to simulate the operating conditions of the gas turbine during operation, and the main stress and strain areas were investigated through the analysis results. And then LCF and creep considering the actual operating conditions were evaluated. The calculated life of fatigue and creep life is compared to the hot gas path inspection interval. For the rejuvenated blades, the creep life and the LCF interval were reviewed based on the temperature, stress, and strain acquired by computational analysis. The creep life was calculated as 59,363 hours by LMP curve, and the LCF was calculated as 2,560 cycles by the Manson Coffin graph.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 1033-1043, February 25–28, 2025,
... Abstract For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed...
Abstract
View Papertitled, Materials Technology for Innovative Thermal Power Generation System Toward Carbon Neutrality in Japan
View
PDF
for content titled, Materials Technology for Innovative Thermal Power Generation System Toward Carbon Neutrality in Japan
For future carbon neutral society, a novel thermal power generation system with no CO 2 emission and with extremely high thermal efficiency (~ 70 %) composed of the oxygen/hydrogen combustion gas turbine combined with steam turbine with the steam temperature of 700°C is needed. The key to realize the thermal power plant is in the developments of new wrought alloys applicable to both gas turbine and steam turbine components under higher temperature operation conditions. In the national project of JST-Mirai program, we have constructed an innovative Integrated Materials Design System , consisting of a series of mechanical property prediction modules (MPM) and microstructure design modules (MDM). Based on the design system, novel austenitic steels strengthened by Laves phase with an allowable stress higher than 100 MPa for 10 5 h at 700°C was developed for the stream turbine components. In addition, for gas turbine components, novel solid-solution type Ni-Cr-W superalloys were designed and found to exhibit superior creep life longer than 10 5 h under 10 MPa at 1000°C. The superior long-term creep strengths of these alloys are attributed to the “grain-boundary precipitation strengthening (GBPS)” effect due to C14 Fe 2 Nb Laves phase and bcc α 2 -W phase precipitated at the grain boundaries, respectively.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 382-399, October 22–25, 2013,
... Abstract Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance...
Abstract
View Papertitled, High-Temperature Solid Particle Erosion Testing Standard for Advanced Power Plant Materials and Coatings
View
PDF
for content titled, High-Temperature Solid Particle Erosion Testing Standard for Advanced Power Plant Materials and Coatings
Solid particle erosion (SPE) harms steam and gas turbines, reducing efficiency and raising costs. The push for ultra-supercritical turbines reignited interest in SPE’s impact on high-temperature alloys. While the gas turbine industry researches methods to improve erosion resistance, a similar need exists for steam turbines. Existing room-temperature SPE test standards are insufficient for evaluating turbine materials. To address this gap, an EPRI program is developing an elevated-temperature SPE standard. This collaborative effort, involving researchers from multiple countries, has yielded a draft standard submitted to ASTM for approval. This presentation will detail the program, test conditions, and the draft standard’s development.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 766-783, February 25–28, 2025,
... Abstract Ni-base superalloys used for hot section hardware of gas turbine systems experience thermomechanical fatigue (TMF), creep, and environmental degradation. The blades and vanes of industrial gas turbines (IGTs) are made from superalloys that are either directionally-solidified (DS...
Abstract
View Papertitled, LCF and TMF of Superalloys Used for IGT Blades and Vanes
View
PDF
for content titled, LCF and TMF of Superalloys Used for IGT Blades and Vanes
Ni-base superalloys used for hot section hardware of gas turbine systems experience thermomechanical fatigue (TMF), creep, and environmental degradation. The blades and vanes of industrial gas turbines (IGTs) are made from superalloys that are either directionally-solidified (DS) or cast as single crystals (SX). Consequently, designing and evaluating these alloys is complex since life depends on the crystallographic orientation in addition to the complexities related to the thermomechanical cycling and the extent of hold times at elevated temperature. Comparisons between the more complex TMF tests and simpler isothermal low cycle fatigue (LCF) tests with hold times as cyclic test methods for qualifying alternative repair, rejuvenation, and heat-treatment procedures are discussed. Using the extensive set of DS and SX data gathered from the open literature, a probabilistic physics-guided neural network is developed and trained to estimate life considering the influence of crystallographic orientation, temperature, and several other cycling and loading parameters.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 821-829, February 25–28, 2025,
... Abstract Hydrogen as a clean fuel is increasingly being used to propel gas turbines and to power combustion engines. Metallic materials including Ni-based alloys are commonly used in conventional gas turbines and combustion engines. However, hydrogen may cause embrittlement in these materials...
Abstract
View Papertitled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
View
PDF
for content titled, Effect of Ni Content on Hydrogen Embrittlement of Conventional Ni-Based Alloys
Hydrogen as a clean fuel is increasingly being used to propel gas turbines and to power combustion engines. Metallic materials including Ni-based alloys are commonly used in conventional gas turbines and combustion engines. However, hydrogen may cause embrittlement in these materials, depending on their chemical composition. In this work, the hydrogen embrittlement behavior of Ni-based alloys containing up to 50 wt.% Fe has been investigated using slow strain rate tensile testing, under cathodic hydrogen charging at room temperature. It was found that the larger the Ni equivalent concentration in an alloy, the more severe the hydrogen embrittlement. It was also found that solid solution alloys have less severe hydrogen embrittlement than precipitation alloys of the same Ni equivalent concentration. In solid solution alloys, hydrogen embrittlement led to cleavage type fracture, which is in line with literature where hydrogen enhanced planar deformation. In precipitation alloys, hydrogen embrittlement resulted in a typical intergranular fracture mode.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 202-214, October 22–25, 2013,
... efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high...
Abstract
View Papertitled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with Temperature Capability 800°C
View
PDF
for content titled, Development and Trial Manufacturing of Ni-Base Alloys for Coal Fired Power Plant with Temperature Capability 800°C
Large scale components of the conventional 600°C class steam turbine were made of the ferritic steel, but the steam turbine plants with main steam temperatures of 700°C or above (A-USC) using the Ni-base superalloys are now being developed in order to further improve the thermal efficiency. The weight of the turbine rotor for the A-USC exceeds 10ton. A lot of high strength superalloys for aircraft engines or industrial gas turbines have been developed up to now. But it is difficult to manufacture the large-scale parts for the steam turbine plants using these conventional high strength superalloys because of their poor manufacturability. To improve high temperature strength without losing manufacturability of the large scale components for the A-USC steam turbine plants, we developed Ni-base superalloy USC800(Ni-23Co-18Cr-8W-4Al-0.1C [mass %]) which has temperature capability of 800°C with high manufacturability achieved by controlling microstructure stability and segregation property. The 700°C class A-USC materials are the mainstream of current development, and trial production of 10 ton-class forged parts has been reported. However, there have been no reports on the development and trial manufacturing of the A-USC materials with temperature capability of 800°C. In this report, results of trial manufacturing and its microstructure of the developed superalloy which has both temperature capability 800°C and good manufacturability are presented. The trial manufacturing of the large forging, boiler tubes and turbine blades using developed material were successfully achieved. According to short term creep tests of the large forging and the tube approximate 100,000h creep strength of developed material was estimated to be 270MPa at 700 °C and 100MPa at 800°C.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 559-574, October 25–28, 2004,
... for application up to 610°C (COST Rotor E). From this steel, Saarschmiede produces high-pressure rotor shafts and gas turbine discs. To meet ever-increasing steam temperatures, a modified steel type with elevated boron content was developed, and pilot rotors have been manufactured. For ingot manufacturing of high...
Abstract
View Papertitled, High Temperature Steel Forgings for Power Generation
View
PDF
for content titled, High Temperature Steel Forgings for Power Generation
Steels with 9-12% chromium content are widely used in steam turbines operating above 550°C due to their improved creep properties. Saarschmiede has extensive experience manufacturing high chromium steels, such as the X12CrMoWVNbN10-11-1 steel designed through the European COST program for application up to 610°C (COST Rotor E). From this steel, Saarschmiede produces high-pressure rotor shafts and gas turbine discs. To meet ever-increasing steam temperatures, a modified steel type with elevated boron content was developed, and pilot rotors have been manufactured. For ingot manufacturing of high chromium steels, Saarschmiede utilizes the Electro-Slag-Remelting process, allowing ingots up to 165 tons. Optimized forging and heat treatment procedures ensure reproducible forging properties. All products undergo rigorous destructive and non-destructive testing.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1206-1219, October 22–25, 2013,
... Abstract In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life...
Abstract
View Papertitled, Defect Tolerant Design Concepts Applied to Remaining Life Assessments of Steam <span class="search-highlight">Turbines</span> and Weld Repairs of Power Generation Equipment
View
PDF
for content titled, Defect Tolerant Design Concepts Applied to Remaining Life Assessments of Steam <span class="search-highlight">Turbines</span> and Weld Repairs of Power Generation Equipment
In today’s market place power generation plants throughout the world have been trying to reduce their operating costs by extending the service life of their critical machines such as steam turbines and gas turbines beyond the design life criteria. The key ingredient in plant life extension is remaining life assessment technology. This paper will outline remaining life procedures which will incorporate the defect tolerant design concepts applied to the various damage mechanisms such as creep, fatigue, creep-fatigue and stress corrosion cracking. Also other embrittlement mechanisms will also be discussed and how they will influence the life or operation of the component. Application of weld repairs to critical components such as rotors and steam chest casings will be highlighted and how defect tolerant design concept is applied for the repair procedure and the acceptance standard of the nondestructive testing applied. Also highlighted will be various destructive tests such as stress relaxation tests (SRT) which measures creep strength and constant displacement rate test (CDRT) which evaluates fracture resistance or notch ductility. Also shown will be actual life extension examples applied to steam turbine components and weld repairs. Utilization of computer software to calculate fatigue and creep fatigue crack growth will also be presented
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 552-558, October 25–28, 2004,
... producing nickel and cobalt-base alloy forgings for applications like aircraft engines, aerospace, land-based gas turbines, and offshore. This paper reports on the manufacturing and testing of large-section forgings made from candidate nickel-base alloys like 617 and 625 for high-pressure/intermediate...
Abstract
View Papertitled, Superalloy Forgings for Advanced High Temperature Power Plants
View
PDF
for content titled, Superalloy Forgings for Advanced High Temperature Power Plants
Improving power plant efficiency through supercritical steam pressures and very high steam temperatures up to 700°C and beyond is an effective approach to reducing fuel consumption and CO2 emissions. However, these extreme steam temperatures necessitate the use of nickel-base alloys in the high-pressure/intermediate-pressure turbine sections requiring very large component sections that cannot be met by steels. Saarschmiede, involved in manufacturing large components for the power generation industry and research programs on advanced 9-12% chromium steels, has extensive experience producing nickel and cobalt-base alloy forgings for applications like aircraft engines, aerospace, land-based gas turbines, and offshore. This paper reports on the manufacturing and testing of large-section forgings made from candidate nickel-base alloys like 617 and 625 for high-pressure/intermediate-pressure turbine components in power stations operating at 700°C and higher steam temperatures.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 213-223, October 11–14, 2016,
... Abstract Modern polycrystalline Ni-base superalloys for advanced gas turbine engines have been a key component that has contributed to technological advances in propulsion and power generation. As advanced turbine engine designs are beginning to necessitate the use of materials with temperature...
Abstract
View Papertitled, Precipitate Phase Stability and Compositional Dependence on Alloying Additions in Advanced Ni-Base Superalloys
View
PDF
for content titled, Precipitate Phase Stability and Compositional Dependence on Alloying Additions in Advanced Ni-Base Superalloys
Modern polycrystalline Ni-base superalloys for advanced gas turbine engines have been a key component that has contributed to technological advances in propulsion and power generation. As advanced turbine engine designs are beginning to necessitate the use of materials with temperature and strength capabilities beyond those exhibited by existing materials, new alloying concepts are required to replace conventional Ni-base superalloys with conventional γ-γ’ microstructures. The phase stability of various high Nb content Ni-base superalloys exhibiting γ-γ’-δ -η microstructures have been the subject of a number of recent investigations due to their promising physical and mechanical properties at elevated temperatures. Although high overall alloying levels of Nb, Ta and Ti are desirable for promoting high temperature strength in γ-γ’ Ni-base superalloys, excessive levels of these elements induce the formation of δ and η phases. The morphology, formation, and composition of precipitate phases in a number of experimental alloys spanning a broad range of compositions were explored to devise compositional relationships that can be used to predict the microstructural phase stability and facilitate the design of Ni-base superalloys.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 506-519, October 25–28, 2004,
... temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings...
Abstract
View Papertitled, Experiences in Manufacturing and Long-Term Mechanical and Microstructural Testing of 9-12% Chromium Steel Forgings for Power Generation Plants
View
PDF
for content titled, Experiences in Manufacturing and Long-Term Mechanical and Microstructural Testing of 9-12% Chromium Steel Forgings for Power Generation Plants
Within the pursuit of improved economic electricity production with reduced environmental pollution, the European research activities COST 501/522 aimed to develop advanced 9-12%Cr steels for highly stressed turbine components by increasing thermal efficiency through higher steam temperatures up to 600/625°C. One such modified Cr steel, a tungsten-alloyed 10%Cr steel, has been in industrial production for several years in steam and gas turbine applications. This paper firstly discusses experiences in manufacturing, non-destructive testing, and mechanical properties achieved in forgings of this COST grade E steel. Secondly, it reports on the manufacturing of a trial melt of a later 9%Cr steel containing cobalt and boron from COST development, describing its long-term creep behavior, microstructural features responsible for superior creep resistance, and test results including short-term properties, detectable flaw size, and initial creep results for a full-size trial rotor forging.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 830-835, October 21–24, 2019,
... Abstract MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys...
Abstract
View Papertitled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
View
PDF
for content titled, Effect of Off-Stoichiometry on Elastic Modulus of TiC Phase in Mo-TiC Ternary System
MoSiBTiC alloy is a promising material for advanced aerospace applications and next generation high pressure turbine blades in jet engines and gas turbines. It mainly consists of Mo solid solution, TiC and Mo 5 SiB 2 phases and has creep strength much stronger than Ni-base superalloys and better than SiC/SiC ceramic matrix composites. Furthermore, the fracture toughness of the alloy is much better (>15 MPa(m) 1/2 ) than Mo-Si-B ternary alloys (<10 MPa(m) 1/2 ) even if the volume fraction of Mo solid solution is less than 50 %. The improvement of fracture toughness would be caused not only by the continuity of Mo solid solution in solidification microstructure but also by TiC phase affecting as a fracture-resistant phase. In order to understand the microstructure evolution during solidification and the effect of TiC phase on the fracture toughness of the MoSiBTiC alloy, Mo-Ti-C ternary model alloys are dealt with in this study. Then, (1) liquidus surface projection and (2) isothermal section and the elastic moduli of TiC phase in equilibrium with Mo solid solution were focused on. The obtained liquidus surface projection suggests that the ternary transition peritectic reaction (L+ Mo 2 C->Mo+TiC) takes place in Mo-rich region. At 1800 °C, TiC phase in equilibrium with Mo phase contains at least 20.2 at% Mo and the Mo/TiC/Mo 2 C three phase region should exist around Mo-15Ti-10C.
Proceedings Papers
AM-EPRI2024, Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, 441-448, February 25–28, 2025,
... Abstract Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its...
Abstract
View Papertitled, Creep Behaviors of Alloy 718 Type Ni-Based Superalloys
View
PDF
for content titled, Creep Behaviors of Alloy 718 Type Ni-Based Superalloys
Alloy 718 is an important class of Nb-bearing Ni-based superalloys for high-temperature applications, such as compressor disks/blades and turbine disks in gas turbine systems. The service temperature of this alloy is, however, limited below 650 °C probably due to the degradation of its strengthening phase γ"-Ni3Nb. Aiming at understanding and improving creep properties of 718-type alloys, we investigated creep behaviors of alloy 718 and alloy Ta-718 where different types of γ" phases, Ni3Nb and Ni3Ta, were precipitated, respectively. Creep tests were conducted at 700 °C under stress conditions of 400 and 500 MPa for the two alloys in aged conditions. It was found that while the minimum creep rates were comparable in the two alloys, the creep rate acceleration was lower in alloy Ta-718 than in alloy 718 under the creep conditions studied. Microstructural observations on the specimens before and after the creep tests suggested that the γ" precipitates were distinguishably finer in alloy Ta-718 than in alloy 718 throughout the creep tests. The formation of planar defects and shearing of γ" precipitates occurred frequently in the alloy 718 specimen. The observed creep deformations were discussed in terms of the critical resolved shear stress due to shearing of γ" particles by strongly paired dislocations.
1