Skip Nav Destination
Close Modal
Search Results for
fossil-fired power plants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 258
Search Results for fossil-fired power plants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 886-899, August 31–September 3, 2010,
... alloys at 725°C, as standard material pairings with optimized wear behavior are unsuitable at such elevated temperatures. These investigations aim to develop material pairings that can maintain good wear behavior under these extreme conditions. control valves fossil fired power plant nickel...
Abstract
View Papertitled, High-Temperature Control Valves for the 700°C <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
View
PDF
for content titled, High-Temperature Control Valves for the 700°C <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
The pursuit of reduced emissions and increased efficiency in ultra-critical steam plants has led to the investigation of systems operating at temperatures up to 720°C and pressures up to 300 bars, necessitating the use of nickel-based alloys. This study focuses on control valves manufactured from Alloy 617, designed for steam temperatures of 725°C, examining specific challenges in their design and manufacture, including machining and welding processes. Initial operational experiences with the valve at 725°C are presented, along with ongoing tribological investigations of nickel-based alloys at 725°C, as standard material pairings with optimized wear behavior are unsuitable at such elevated temperatures. These investigations aim to develop material pairings that can maintain good wear behavior under these extreme conditions.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... in the past decade. The newly built 600+ ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in china are the world s most advanced level technically and effectively. The available capacity of 600+ UCS fossil fire power plant in china is more than 200 GW...
Abstract
View Papertitled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
View
PDF
for content titled, Status of the <span class="search-highlight">Power</span> Industry in China and Overall Progress for A-USC Technology
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1010-1017, October 11–14, 2016,
... Abstract G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C...
Abstract
View Papertitled, G115 Steel and Its Application for 600+°C A-USC-<span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, G115 Steel and Its Application for 600+°C A-USC-<span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C. The successful development of G115 extends the upper application temperature limitation of martensitic steel from 600°C to about 650°C. This breakthrough is imperative for the design and construction of 610°C to 650°C A-USC fossil fired power plants, from the viewpoint of the material availability and economics of coal fired power plant designs. This paper introduces the development history and progress of G115 steel. The strengthening mechanism of the novel martensitic steel is briefly discussed, and the optimized chemical composition and mechanical properties of G115 steel are described. The details of industrial trials of G115 tube and pipe at BaoSteel in the past years are reviewed, with the emphasis on the microstructure evolution during aging and creep testing. These tests clearly show that the microstructure of G115 steel is very stable up to the temperature of 650°C. Correspondingly, the comprehensive mechanical properties of G115 steel are very good. The creep rupture time is longer than 17000 hours at the stress of 120MPa and at the temperature of 650°C and 25000+ hours at the stress of 100MPa and at the temperature of 650°C, which is about 1.5 times higher than that of P92 steel. At the same time, the oxidation resistance of G115 steel is a little bit better than that of P92 steel. If G115 steel is selected to replace P92 pipes at the temperature scope from 600°C to 650°C, the total weight of the pipe can be reduced by more than 50% and the wall thickness of the pipe can be reduced up to about 55%. In addition, the upper application temperature limitation of G115 steel is about 30°C higher than that of P92 steel. Thus, G115 steel is a strong candidate material for the manufacturing of 600+°C advanced ultra-super-critical (A-USC) fossil fuel power plants in China and elsewhere.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 960-972, October 22–25, 2013,
... Abstract In order to improve thermal efficiency of fossil-fired power plants through increasing steam temperature and pressure high strength martensitic 9-12%Cr steels have extensively been used, and some power plants have experienced creep failure in high temperature welds after several years...
Abstract
View Papertitled, Creep Degradation and Life Assessment of High Temperature Welds
View
PDF
for content titled, Creep Degradation and Life Assessment of High Temperature Welds
In order to improve thermal efficiency of fossil-fired power plants through increasing steam temperature and pressure high strength martensitic 9-12%Cr steels have extensively been used, and some power plants have experienced creep failure in high temperature welds after several years operations. The creep failure and degradation in welds of longitudinally seam-welded Cr- Mo steel pipes and Cr-Mo steel tubes of dissimilar metal welded joint after long-term service are also well known. The creep degradation in welds initiates as creep cavity formation under the multi-axial stress conditions. For the safety use of high temperature welds in power plant components, the complete understanding of the creep degradation and establishment of creep life assessment for the welds is essential. In this paper creep degradation and initiation mechanism in welds of Cr-Mo steels and high strength martensitic 9-12%Cr steels are reviewed and compared. And also since the non-destructive creep life assessment techniques for the Type IV creep degradation and failure in high strength martensitic 9-12%Cr steel welds are not yet practically established and applied, a candidate way based on the hardness creep life model developed by the authors would be demonstrated as well as the investigation results on the creep cavity formation behavior in the welds. Additionally from the aspect of safety issues on welds design an experimental approach to consider the weld joint influence factors (WJIF) would also be presented based on the creep rupture data of the large size cross-weld specimens and component welds.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 832-846, October 22–25, 2013,
... Abstract Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging...
Abstract
View Papertitled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
View
PDF
for content titled, Steam Loop Testing of A-USC Materials for Oxidation and Fireside Corrosion - Alstom’s Experience to Date
Nickel-based alloys and stainless steel Super304H, along with various coatings, are undergoing testing in a steam loop at Alabama Power’s Plant Barry. These materials are being evaluated for use in advanced ultra-supercritical (A-USC) fossil-fired power plants at temperatures ranging from 538°C to 815°C. The loop has been operational for over 18 months, with the alloys exceeding 6,300 hours above 538°C. An additional 7,000 hours at high temperatures are planned before the loop’s removal in 2014. Initial inspections show minimal material corrosion, suggesting their suitability for A-USC applications. This paper details the loop’s design, materials, manufacturing, operation, and inspection findings. Additionally, it describes a methodology for predicting steam-side oxidation and fireside corrosion rates and highlights the significance of this testing for A-USC development and commercialization.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 35-50, October 25–28, 2004,
... in the properties of fabricated metal. For further improvement in the thermal efficiency of fossil-fired power plants with ultra supercritical steam parameter conditions aiming at temperatures above 700°C, alloy development concepts and material issues with increasing steam temperature must be reviewed...
Abstract
View Papertitled, Alloy Development and Material Issues with Increasing Steam Temperature
View
PDF
for content titled, Alloy Development and Material Issues with Increasing Steam Temperature
In the later half of the last century great progress in alloy development for power applications was seen to improve thermal efficiency with increasing steam temperature. Meanwhile, many material-related troubles have been experienced due to rising temperature and uncertainty in the properties of fabricated metal. For further improvement in the thermal efficiency of fossil-fired power plants with ultra supercritical steam parameter conditions aiming at temperatures above 700°C, alloy development concepts and material issues with increasing steam temperature must be reviewed and discussed. In this paper new findings in the areas of alloy developments, creep failure in base metal and weldments, thermal fatigue failure and steam oxidation/hot corrosion are presented and discussed, as well as the economical aspect of material development, which is essential to realize unprecedented ultra supercritical steam conditions.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
... Abstract The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over...
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> and Heat Recovery Boilers
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> and Heat Recovery Boilers
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 628-639, October 21–24, 2019,
... Abstract A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions...
Abstract
View Papertitled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
View
PDF
for content titled, Alloy Design and Development of High Cr Containing FeCrAl Ferritic Alloys for Extreme Environments
A new alloy design concept for creep- and corrosion-resistant, fully ferritic alloys was proposed for high-temperature structural applications in current/future fossil-fired power plants. The alloys, based on the Fe-30Cr-3Al (in weight percent) system with minor alloying additions of Nb, W, Si, Zr and/or Y, were designed for corrosion resistance though high Cr content, steam oxidation resistance through alumina-scale formation, and high-temperature creep performance through fine particle dispersion of Fe 2 (Nb,W)-type Laves phase in the BCC-Fe matrix. Theses alloys are targeted for use in harsh environments such as combustion and/or steam containing atmospheres at 700°C or greater. The alloys, consisting of Fe-30Cr-3Al-1Nb-6W with minor alloying additions, exhibited a successful combination of oxidation, corrosion, and creep resistances comparable or superior to those of commercially available heat resistant austenitic stainless steels. An optimized thermo-mechanical treatment combined with selected minor alloying additions resulted in a refined grain structure with high thermal stability even at 1200°C, which improved room-temperature ductility without sacrificing the creep performance. The mechanism of grain refinement in the alloy system is discussed.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 271-280, October 3–5, 2007,
... plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies. corrosion resistance creep rupture strength fabricability fatigue characteristics fired steam power plants fossil power plants fracture mechanics...
Abstract
View Papertitled, Nickel Alloys for High Efficiency <span class="search-highlight">Fossil</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, Nickel Alloys for High Efficiency <span class="search-highlight">Fossil</span> <span class="search-highlight">Power</span> <span class="search-highlight">Plants</span>
To address the escalating energy demands of the 21st century and meet environmental protection objectives, new fossil-fueled power plant concepts must be developed with enhanced efficiency and advanced technologies for CO 2 , sulfur oxide, and nitrogen reduction. As plant temperatures and pressures increase to improve overall efficiency, the property requirements for alloys used in critical components become increasingly demanding, particularly regarding creep rupture strength, high-temperature corrosion resistance, and other essential characteristics. Newer and existing nickel alloys emerge as promising candidates for these challenging applications, necessitating comprehensive development through detailed property investigations across multiple categories. These investigations encompass a holistic approach, including chemical composition analysis, physical and chemical properties, mechanical and technological properties (addressing short-term and long-term behaviors, aging effects, and thermal stability), creep and fatigue characteristics, fracture mechanics, fabrication process optimization, welding performance, and component property evaluations. The research spans critical areas such as materials development for membrane walls, headers, piping, reheater and superheater components, and various other high-temperature power plant elements. This paper provides a comprehensive overview of existing and newly developed nickel alloys employed in components of fossil-fueled, high-efficiency 700°C steam power plants, highlighting the intricate materials science challenges and innovative solutions driving next-generation power generation technologies.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 1227-1228, October 25–28, 2004,
... at different temperatures for 10,000 hours before testing. Finally, creep-fatigue interaction tests were performed at 823K and 873K using tensile hold times ranging from 1 to 30 minutes. air cooling creep-fatigue interaction test creep-fatigue properties ferritic stainless steel fossil-fired power...
Abstract
View Papertitled, High-Temperature Low Cycle Fatigue and Creep-Fatigue Behavior of a Modified 9Cr-1Mo Ferritic Steel
View
PDF
for content titled, High-Temperature Low Cycle Fatigue and Creep-Fatigue Behavior of a Modified 9Cr-1Mo Ferritic Steel
This paper explores the low cycle fatigue (LCF) and creep-fatigue properties of a hot-forged, normalized, and tempered 9Cr-1Mo ferritic steel. This steel offers good performance in high-temperature applications (up to 873K) in power plants and reactors. The steel was forged into 70 mm diameter rods and then heat-treated with normalizing (1313K for 1 hour, air cooling) and tempering (1033K for 1 hour, air cooling). LCF tests were conducted at 300-873K with varying strain amplitudes and strain rates to understand the influence of both factors. Additionally, some specimens were aged at different temperatures for 10,000 hours before testing. Finally, creep-fatigue interaction tests were performed at 823K and 873K using tensile hold times ranging from 1 to 30 minutes.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 46-58, October 3–5, 2007,
... generating unit with installed capacity of 16 horsepower (11.76kW) was set up. Since then, by 1949, it had got up to 1.85GW; by the end of 1965, 15.08GW; by the end of 1980, 65.87GW; by the end of 2000, 319.32GW; by the end of 2005, 517.18GW (in which fossil fired power plant occupied 75.67%, water power...
Abstract
View Papertitled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
View
PDF
for content titled, The Development of Electric <span class="search-highlight">Power</span> and High-Temperature Materials Application in China: An Overview
The rapid development of Chinese economy (recently in the order of 10%/year) is requiring sustainable growth of power generation to meet its demand. In more than half century after the foundation of People's Republic of China, the Chinese power industry has reached a high level. Up to now, the total installed capacity of electricity and annual overall electricity generation have both jumped to the 2 nd position in the world, just next to United States. A historical review and forecast of China electricity demand to the year of 2010 and 2020 will be introduced. Chinese power plants as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants with the steam temperature up to 600°C or higher will get a rapid development. The first two series of 2×1000MW USC power units with the steam parameters 600°C, 26.25MPa have been put into service in November and December 2006 respectively. In recent years more than 30 USC power units will be installed in China. USC power plant development will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing. Among those materials the modified 9- 12%Cr ferritic steels, Ni-Cr austenitic steels and a part of nickel-base superalloys have been paid special attention in Chinese materials market.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 989-1000, October 11–14, 2016,
... [3, 10-12, 15]. For that reason, 9 % Cr (wt. %) ferritic/martensitic steels such as P91, P92 and E911 are already widely used for high temperature components in fossil- fired power plants and due to their high potential, they have been made subject of serious materials development in the last decades...
Abstract
View Papertitled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and Oxidation
View
PDF
for content titled, Experience with 9Cr3W3CoVNbBN Steel in Terms of Welding, Creep and Oxidation
The presented work summarizes the results of more than 10 years of research at TU Graz and TU Chemnitz and partners on a martensitic boron and nitrogen stabilized 9Cr3W3Co (MARBN) steel grade. The design philosophy of MARBN steels is presented and critical issues regarding boron and nitrogen balance are discussed. Microstructural characterization of two different laboratory heats, is presented and efforts in European projects towards an upscaling of melts are presented. Base material creep testing data at 650 °C up to 50.000 hours is presented and assessed to commercial alloys such as ASTM grades P91 and P92. An increase of creep rupture stress of more than +20% was recorded. Oxidation tests in steam at 650°C revealed an anomalous response of the material. Several specimens exhibited excellent oxidation resistance commonly only seen for grades of higher chromium content. The anomalous oxidation behaviour is identified and discussed, although the causes remain yet unclear. Results of manufacturing, characterization and testing of different MARBN welds, including gas-tungsten-arc-, gas-metal-arc-, friction stir and electron beam welds reveal a microstructure memory effect in the heat affected zone, so that no uniform fine-grained zone is present. The behaviour of crosswelds during long-term creep testing at 650 °C up to more than 32.000 hours is assessed and the susceptibility to Type IV cracking is discussed. The manuscript summarizes research of more than 10 years, presents current research activities on MARBN and describes open questions for an alloy identified as a promising martensitic steel grade for elevated temperature components.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 968-981, October 3–5, 2007,
... a concentrated CO2 flue gas that is relatively easy to capture, transport, and sequester. It is a promising technology in that it can be readily applied to the existing base of fossil-fired power plants, is relatively straightforward, and can offer significant cost advantages for new units including...
Abstract
View Papertitled, Overview of Oxy-Combustion Technology for Utility Coal-<span class="search-highlight">Fired</span> Boilers
View
PDF
for content titled, Overview of Oxy-Combustion Technology for Utility Coal-<span class="search-highlight">Fired</span> Boilers
With nearly half of the world's electricity generation fueled by coal and an increasing focus on limiting carbon dioxide emissions, several technologies are being evaluated and developed to capture and prevent such emissions while continuing to use this primary fossil energy resource. One method aimed at facilitating the capture and processing of the resulting carbon dioxide product is oxy-combustion. With appropriate adjustments to the process, the approach is applicable to both new and existing power plants. In oxy-combustion, rather than introducing ambient air to the system for burning the fuel, oxygen is separated from the nitrogen and used alone. Without the nitrogen from the air to dilute the flue gas, the flue gas volume leaving the system is significantly reduced and consists primarily of carbon dioxide and water vapor. Once the water vapor is reduced by condensation, the purification and compression processes otherwise required for carbon dioxide transport and sequestration are significantly reduced. As an introduction to and overview of this technology, the paper summarizes the basic concepts and system variations, for both new boiler and retrofit applications, and also serves as an organized review of subsystem issues identified in recent literature and publications. Topics such as the air separation units, flue gas recirculation, burners and combustion, furnace performance, emissions, air infiltration issues, and materials issues are introduced.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 603-619, August 31–September 3, 2010,
..., the intention to push the German electrical demand on a constant level in a near future can just be reached by replacing old, fossil fired power plants with new highly efficient and environmental friendly ones. This requirement has been indeed reinforced by the fact that the German government decided to stop...
Abstract
View Papertitled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical <span class="search-highlight">Fossil</span> <span class="search-highlight">Plants</span>
View
PDF
for content titled, New Concepts for Integrity and Lifetime Assessment of Boiler and Turbine Components for Advanced Ultra-Supercritical <span class="search-highlight">Fossil</span> <span class="search-highlight">Plants</span>
Advanced ultra-supercritical fossil plants operated at 700/725 °C and up to 350 bars are currently planned to be realized in the next decade. Due to the increase of the steam parameters and the use of new materials e.g. 9-11%Cr steels and nickel based alloys the design of highly loaded components is approaching more and more the classical design limits with regard to critical wall thickness and the related tolerable thermal gradients. To make full use of the strength potential of new boiler materials but also taking into account their specific stress-strain relaxation behavior, new methods are required for reliable integrity analyses and lifetime assessment procedures. Numerical Finite Element (FE) simulation using inelastic constitutive equations offers the possibility of “design by analysis” based on state of the art FE codes and user-defined advanced inelastic material laws. Furthermore material specific damage mechanisms must be considered in such assessments. With regard to component behavior beside aspects of multiaxial loading conditions must be considered as well as the behavior of materials and welded joints in the as-built state. Finally an outlook on the capabilities of new multi-scale approaches to describe material and component behavior will be given.
Proceedings Papers
AM-EPRI2004, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, 638-652, October 25–28, 2004,
... Abstract Steel castings of creep-resistant steels are critical components in the high and intermediate pressure turbine sections of fossil fuel-fired power plants. As plant efficiencies improve and emission standards tighten, steam parameters become more stringent, necessitating constant...
Abstract
View Papertitled, Advanced 9-12%Cr Cast Steel Grades: Research, Foundry Process Development, Quality, and Experience
View
PDF
for content titled, Advanced 9-12%Cr Cast Steel Grades: Research, Foundry Process Development, Quality, and Experience
Steel castings of creep-resistant steels are critical components in the high and intermediate pressure turbine sections of fossil fuel-fired power plants. As plant efficiencies improve and emission standards tighten, steam parameters become more stringent, necessitating constant enhancement of material creep resistance. Steel foundries alone cannot conduct necessary material development at an appropriate scale, so all power plant component suppliers cooperate to define optimal chemical compositions, perform test melts, creep tests, microstructure investigations, and test pilot components, such as through the COST program developing new 9-12%Cr cast steel grades. This paper illustrates a steel foundry's role in COST, describing the transfer of these new cast steel grades from research into commercial production of heavy cast components, outlining incurred problems, process development cycles, comparisons with low-alloy steels, welding tests, base material/weld investigations, heat treatment optimization, and casting of pilot components/weldability test plates to verify castability of larger parts and make necessary adjustments. Parallel to ongoing COST creep tests, the steel grades were introduced into commercial large component production, involving solutions to process-related issues, with over 180 components successfully manufactured to date, while further COST program developments present ongoing challenges.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 315-326, October 21–24, 2019,
... Abstract The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating...
Abstract
View Papertitled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
View
PDF
for content titled, The Development of Nondestructive Evaluation Coupons in Full Grade 91 Cross-welds with Various Levels of Creep Damage
The global electric power production is largely dependent on the operation of fossil-fired generation units. Many coal-fired units are exceeding 300,000 hours, which is beyond the expected design life. This has caused a continuous need to inspect steam touched components operating at high temperature and pressure. State-of-the-art coal and combined cycle gas units are specifying ever-greater amounts of the Creep Strength Enhanced Ferritic (CSEF) steels such as Grade 91 or Grade 92. The martensitic 9%Cr CSEF steels were developed to provide greater strength than traditional low alloy power plant steels, such as Grades 11, 12 and 22. The enhanced strength allows for a reduction in overall wall thickness in new or replacement components. Extensive research in both service failures and laboratory testing has shown that time-dependent creep damage can develop differently in Grade 91 steel when compared to low alloy steels. Furthermore, the creep strength in Grade 91 can vary by more than a factor of 10 between different heats. This wide variation of creep strength has led to extensive research in understanding the damage mechanisms and progression of damage in this steel. In this study, large cross weld samples were fabricated from thick wall piping in Grade 91 steel using two different heats of material. One weld was fabricated in a ‘damage tolerant’ heat and another weld was fabricated in a ‘damage intolerant’ heat of material. The samples were subjected to a post-weld heat treatment (PWHT) at a temperature of 745°C (1375°F) for 1.50 hours. Hardness maps were collected on the cross-welds in the as-welded and PWHT condition for both weldments. Cross-weld creep test conditions were selected to develop accelerated damage representative of in-service behavior. The test samples were interrupted at multiple stages and nondestructively evaluated (NDE) with advanced phased-array ultrasonic techniques. Samples were developed to variable levels of damage (50% to 100% life fraction) in both weldments. Metallographic sections were extracted at specific locations to validate the NDE findings using light emitting diode, laser and scanning electron microscopy. This research is being used to help validate the level of damage that can be reliably detected using conventional and advanced NDE techniques.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 9-23, October 22–25, 2013,
... and microstructural analysis also after service exposure. coal fired power plants creep analysis microstructural analysis process design thick-walled components welded joints Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25...
Abstract
View Papertitled, ENCIO Project: A European Approach to 700°C <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
View
PDF
for content titled, ENCIO Project: A European Approach to 700°C <span class="search-highlight">Power</span> <span class="search-highlight">Plant</span>
ENCIO (European Network for Component Integration and Optimization) is a European project aiming at qualifying materials, components, manufacturing processes, as well as erection and repair concepts, as follow-up of COMTES700 activities and by means of erecting and operating a new Test Facility. The 700°C technology is a key factor for the increasing efficiency of coal fired power plants, improving environmental and economic sustainability of coal fired power plants and achieving successful deployment of carbon capture and storage technologies. The ENCIO-project is financed by industrial and public funds. The project receives funding from the European Community's Research Fund for Coal and Steel (RFCS) under grant agreement n° RFCPCT-2011-00003. The ENCIO started on 1 July 2011. The overall project duration is six years (72 months), to allow enough operating hours, as well as related data collection, investigations and evaluation of results. The ENCIO Test Facility will be installed in the “Andrea Palladio” Power Station which is owned and operated by ENEL, located in Fusina, very close to Venice (Italy). The Unit 4 was selected for the installation of the Test Facility and the loops are planned for 20.000 hours of operation at 700°C. The present paper summarizes the current status of the overall process design of the thick-walled components, the test loops and the scheduled operating conditions, the characterizations program for the base materials and the welded joints, like creep and microstructural analysis also after service exposure.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 1067-1076, August 31–September 3, 2010,
.... boilers creep rupture strength creep rupture test metallurgical investigation nickel-iron alloys weldability welding weldments Advances in Materials Technology for Fossil Power Plants Proceedings from the Sixth International Conference August 31 September 3, 2010, Santa Fe, New Mexico, USA...
Abstract
View Papertitled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
View
PDF
for content titled, Long-Term Creep Rupture Strength of Weldment of Candidate Ni and Fe-Ni Based Materials for Tube and Pipe of A-USC Boilers
Continuous and active works have been going to develop 700°C A-USC (Advanced Ultra Super Critical) power plants in Europe, United States and also Japanese national project has launched in 2008. In this new Japanese project Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is one of the candidate materials for boiler tube and pipe as well as Ni based alloys such as well-known Alloy617, Alloy263 and Alloy740. The most important issue in boiler fabrication is the welding process of these alloys and long-term reliability of their weldments. Authors investigated the weldability of HR6W thick-wall pipe. The integrity of the weldment was confirmed with metallurgical investigation, mechanical testing and long term creep rupture test. It is proved that the narrow gap HST welding procedure can meet the requirements for Ni based or Fe-Ni based alloys and provides excellent strength properties.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1432-1440, October 22–25, 2013,
...) are widely used from 600°C to 650°C as tubing and piping in fossil fired power plants to accomplish increased efficiency. In addition, for the last decade, researchers around the world are trying to develop Ultra Advanced Supercritical (U-ASC) materials (stainless steels, Nickel based superalloy), which...
Abstract
View Papertitled, In-Situ Full Field Creep Deformation Study of Creep Resistant Materials Welds
View
PDF
for content titled, In-Situ Full Field Creep Deformation Study of Creep Resistant Materials Welds
The current study proposed a new method that utilizes digital image correlation (DIC) techniques to measure in-situ full field strain maps of creep resistant material welds. The stress-rupture test is performed in a Gleeble thermal mechanical simulator. This technique successfully captured a significant difference in the local creep deformation between two Grade 91 steel welds with different pre-welding conditions (standard and non-standard). Strain contour plots exhibited inhomogeneous deformation in the weldments, especially at the heat-affected zone (HAZ). Standard heat-treated specimens had significant creep deformation in the HAZ. On the other hand, non-standard heat treated specimens showed HAZ local strains to be 4.5 times less than that of the standard condition, after a 90-hour creep test at 650°C and 70 MPa. The present study measured the full field strain evolution in the weldments during creep deformation for the first time. The proposed method demonstrated a potential advantage to evaluate local creep deformation in the weldments of any creep resistant material within relatively short periods of time.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1006-1015, October 22–25, 2013,
..., as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W. INTRODUCTION In recent years, the environmental restrictions on CO2 emission require advanced power plants with higher efficiency. This has prompted a need to develop fossil fired power plants with higher...
Abstract
View Papertitled, Verification of Long Term Creep Rupture Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
View
PDF
for content titled, Verification of Long Term Creep Rupture Strength and Component Fabricability of Candidate Ni-Based Materials for A-USC Boilers
In recent years continuous and extensive research and development activities have been being done worldwide on 700°C A-USC (Advanced Ultra Super Critical) power plants to achieve higher efficiency and reduce the CO 2 emission. Increasing steam temperature and pressure of such A-USC boilers under consideration require the adoption of Ni based alloys. In the Japanese national project launched in 2008, Ni based alloy HR6W (45Ni-23Cr-7W-Ti, ASME Code Case 2684) is one of the candidate materials for boiler tube and pipe as well as Alloy617, Alloy263 and Alloy740H. The most important issues in A-USC boiler fabrication are the establishment of proper welding process for thick wall components of these alloys and verification of the long term reliability of their weldments. In our previous study, the weldability of HR6W was investigated and the welding process for Ni based thick wall pipe was established with the narrow gap HST (Hot wire Switching TIG) welding procedure originally developed by Babcock-Hitachi K.K. In this paper, creep rupture strengths of HR6W weldment were verified by the long term test up to 60,000 hours for tube and 40,000 hours for pipe. In Japanese national project, narrow gap HST welding process was also applied to the welding test for the other Ni based candidate pipe materials. Furthermore, as the practical A-USC boiler manufacturing trials, header mockup test was conducted and qualified for HR6W.
1