Skip Nav Destination
Close Modal
Search Results for
fossil-fired boilers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-20 of 213
Search Results for fossil-fired boilers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 847-862, October 22–25, 2013,
... tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M. abrasion resistance circumferential cracking corrosion fatigue corrosion resistance fossil-fired boilers hardness Inconel filler metal 72M thermal conductivity weld...
Abstract
View Papertitled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of Tubing in <span class="search-highlight">Fossil</span>-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
View
PDF
for content titled, Inconel Filler Metal 72M Provides Corrosion and Wear Resistance and Low “Delta T” Through Walls of Tubing in <span class="search-highlight">Fossil</span>-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
Inconel Filler Metal 72 (FM 72) and Incoclad 671/800H co-extruded tubing have been successfully used for over 20 years to protect boiler tubing from high-temperature degradation. A newer alloy, FM 72M, offers superior weldability and the lowest corrosion rate in simulated low NOx environments. Both FM 72 and 72M show promise in addressing challenges like circumferential cracking and corrosion fatigue in waterwall tubing overlays. Additionally, 72M’s superior wear resistance makes it ideal for replacing erosion shields in superheater and reheater tubing. Beyond improved protection, these alloys exhibit increased hardness and thermal conductivity over time, leading to reduced temperature difference across the tube wall and consequently, enhanced boiler efficiency and lower maintenance costs. This paper discusses the historical selection of optimal alloys for waterwall and upper boiler tubing overlays, analyzes past failure mechanisms, and highlights the key properties of successful choices like FM 72 and 72M.
Proceedings Papers
AM-EPRI2010, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Sixth International Conference, 153-163, August 31–September 3, 2010,
... with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h. chemical composition creep ductility creep rupture properties ferritic steel fossil fired boilers hardenability hardening heat recovery boilers microstructure Advances...
Abstract
View Papertitled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> and Heat Recovery <span class="search-highlight">Boilers</span>
View
PDF
for content titled, Long-Term Creep Properties of 2.25Cr-1.6W-VNbB Steel (T23/P23) for <span class="search-highlight">Fossil</span> <span class="search-highlight">Fired</span> and Heat Recovery <span class="search-highlight">Boilers</span>
The creep enhanced low alloy steel with 2.25Cr-1.6W-V-Nb (HCM2S; Gr.23, ASME CC2199) has been originally developed by Mitsubishi Heavy Industries, Ltd. and Sumitomo Metal Industries, Ltd. The steel tubes and pipe (T23/P23) are now widely used for fossil fired power plants all over the world. Recently, the chemical composition requirements for ASME Code of the steel have been changed and a new Code Case 2199-4 has been issued with the additional restriction regarding Ti, B, N and Ni, and the Ti/N ratio incorporated. In this study, the effects of additional elements of Ti, N and B on the mechanical properties and microstructure of T23/P23 steels have been evaluated. It is found that N decreases the hardenability of the steel by forming BN type nitride and thus consuming the effective B, which is a key element for hardening of the steel. The addition of Ti, on the other hand, enhances the hardenability of the steel by precipitating TiN and thus increasing the effective B. It is also found that too much addition of Ti degrades the Charpy impact property and creep ductility of the steel to a great extent. This phenomenon might affect the steel's long-term creep rupture properties, although a steel with the original chemical composition has demonstrated high creep strength at temperatures up to 600°C for more than 110,000 h.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 507-519, October 3–5, 2007,
... Abstract In fossil-fired boilers, combustion-generated thermal energy transfers to the working fluid via exchanger tubes, where an internal oxide layer forms over time, reducing thermal conductivity and raising metal temperatures. This self-activating process accelerates creep damage...
Abstract
View Papertitled, Impact of Steam-Side Oxidation on <span class="search-highlight">Boiler</span> Heat Exchanger Tubes Design
View
PDF
for content titled, Impact of Steam-Side Oxidation on <span class="search-highlight">Boiler</span> Heat Exchanger Tubes Design
In fossil-fired boilers, combustion-generated thermal energy transfers to the working fluid via exchanger tubes, where an internal oxide layer forms over time, reducing thermal conductivity and raising metal temperatures. This self-activating process accelerates creep damage, significantly shortening component lifespan. Boiler design codes set Maximum Allowable Stresses based on mechanical properties, primarily creep resistance, but oxidation effects are only indirectly considered through “design temperature” selection—an approach inadequate for next-generation high-performance boilers with increasingly severe steam conditions. This paper highlights the need to integrate oxidation behavior into the design of advanced heat-exchanging components by examining the impact of steam oxidation on tube lifespan, including oxide layer growth, metal loss, temperature rise, and reduced creep rupture time, with thermal flux effects illustrated through examples. It also compares the behavior of two 9-12Cr% steels: Grade 92, known for strong creep resistance, and VM12, which offers superior oxidation resistance. Additionally, it proposes a revised “design temperature” expression incorporating oxidation resistance performance indices and exchanger thermal characteristics. The study concludes by emphasizing the need for further research into oxidation kinetics, thermal properties, and oxide layer exfoliation mechanisms.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 24-34, October 11–14, 2016,
... fossil power plants, including super-heat (SH), re-heat (RH) and heavy piping systems in boiler and high temperature rotor, casing, blade and bolt in steam turbine. Inside the boiler system, the temperature of USC steam is gradually heated to 700 , and the fire-side metal temperature of boiler tubes can...
Abstract
View Papertitled, Status of the Power Industry in China and Overall Progress for A-USC Technology
View
PDF
for content titled, Status of the Power Industry in China and Overall Progress for A-USC Technology
The Chinese power industry has experienced rapid development in the past decade. The newly built 600+°C ultra-super-critical (UCS) fossil fire power plants and pressed water reactor nuclear power plants in China are the world’s most advanced level technically and effectively. The available capacity of 600+°C UCS fossil fire power plant in China is more than 200 GW by the end of 2015, which has greatly contributed to the energy-saving and emission-reduction for China and the whole world. In China, the 610°C and 620°C advanced USC (A-USC) fossil fire power plants had been combined into the grid, 630°C A-USC fossil fire power plant is about to start to build, the feasibility of 650°C A-USC fossil fire power plant is under evaluation, 700°C AUSC fossil fire power plant has been included in the national energy development plan and the first Chinese 700°C A-USC testing rig had been put into operation in December 2015. The advanced heat resistant materials are the bottlenecking to develop A-USC fossil fire power plant worldwide. In this paper, the research and development of candidate heat resistant steels and alloys selected and/or used for 600+°C A-UCS fossil fire power plant in China is emphasized, including newly innovated G115 martensitic steel used for 630°C steam temperature, C-HRA-2 fully solid-solution strengthening nickel alloy used for 650°C steam temperature, C-HRA-3 solid-solution strengthening nickel alloy used for 680°C steam temperature, 984G iron-nickel alloy used for 680°C steam temperature, C-HRA-1 precipitation hardening nickel alloy and C700R1 solid-solution strengthening nickel alloy used for 700+°C steam temperature.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 66-73, October 11–14, 2016,
... Abstract Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld...
Abstract
View Papertitled, Some Problems in Metal Material Service of <span class="search-highlight">Fossil</span> Power Units in Mainland China
View
PDF
for content titled, Some Problems in Metal Material Service of <span class="search-highlight">Fossil</span> Power Units in Mainland China
Along with rapid development of thermal power industry in mainland China, problems in metal materials of fossil power units also change quickly. Through efforts, problems such as bursting due to steam side oxide scale exfoliation and blocking of boiler tubes, and finned tube weld cracking of low alloy steel water wall have been solved basically or greatly alleviated. However, with rapid promotion of capacity and parameters of fossil power units, some problems still occur occasionally or have not been properly solved, such as weld cracks of larger-dimension thick-wall components, and water wall high temperature corrosion after low-nitrogen combustion retrofitting.
Proceedings Papers
The Development of Electric Power and High-Temperature Materials Application in China: An Overview
Free
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 46-58, October 3–5, 2007,
... equipments will concentrate on large-scale ultra supercritical fossil fired power units, large air-cooling units, large CFB boilers, large nuclear power units, large gas turbine combined cycle generating sets, large water power and water pumping energy storage units, large wind power units as well as new...
Abstract
View Papertitled, The Development of Electric Power and High-Temperature Materials Application in China: An Overview
View
PDF
for content titled, The Development of Electric Power and High-Temperature Materials Application in China: An Overview
The rapid development of Chinese economy (recently in the order of 10%/year) is requiring sustainable growth of power generation to meet its demand. In more than half century after the foundation of People's Republic of China, the Chinese power industry has reached a high level. Up to now, the total installed capacity of electricity and annual overall electricity generation have both jumped to the 2 nd position in the world, just next to United States. A historical review and forecast of China electricity demand to the year of 2010 and 2020 will be introduced. Chinese power plants as well as those worldwide are facing to increase thermal efficiency and to decrease the emission of CO 2 , SO X and NO X . According to the national resources of coal and electricity market requirements in the future 15 years power generation especially the ultra-super-critical (USC) power plants with the steam temperature up to 600°C or higher will get a rapid development. The first two series of 2×1000MW USC power units with the steam parameters 600°C, 26.25MPa have been put into service in November and December 2006 respectively. In recent years more than 30 USC power units will be installed in China. USC power plant development will adopt a variety of qualified high temperature materials for boiler and turbine manufacturing. Among those materials the modified 9- 12%Cr ferritic steels, Ni-Cr austenitic steels and a part of nickel-base superalloys have been paid special attention in Chinese materials market.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1010-1017, October 11–14, 2016,
... Abstract G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C...
Abstract
View Papertitled, G115 Steel and Its Application for 600+°C A-USC-Power Plants
View
PDF
for content titled, G115 Steel and Its Application for 600+°C A-USC-Power Plants
G115 is a novel ferritic heat resistant steel developed by CISRI in the past decade. It is an impressive candidate material to make tubes, pipes, and forgings for advanced ultra super critical (A-USC) fossil fired power plants used for the temperature scope from 600°C to 650°C. The successful development of G115 extends the upper application temperature limitation of martensitic steel from 600°C to about 650°C. This breakthrough is imperative for the design and construction of 610°C to 650°C A-USC fossil fired power plants, from the viewpoint of the material availability and economics of coal fired power plant designs. This paper introduces the development history and progress of G115 steel. The strengthening mechanism of the novel martensitic steel is briefly discussed, and the optimized chemical composition and mechanical properties of G115 steel are described. The details of industrial trials of G115 tube and pipe at BaoSteel in the past years are reviewed, with the emphasis on the microstructure evolution during aging and creep testing. These tests clearly show that the microstructure of G115 steel is very stable up to the temperature of 650°C. Correspondingly, the comprehensive mechanical properties of G115 steel are very good. The creep rupture time is longer than 17000 hours at the stress of 120MPa and at the temperature of 650°C and 25000+ hours at the stress of 100MPa and at the temperature of 650°C, which is about 1.5 times higher than that of P92 steel. At the same time, the oxidation resistance of G115 steel is a little bit better than that of P92 steel. If G115 steel is selected to replace P92 pipes at the temperature scope from 600°C to 650°C, the total weight of the pipe can be reduced by more than 50% and the wall thickness of the pipe can be reduced up to about 55%. In addition, the upper application temperature limitation of G115 steel is about 30°C higher than that of P92 steel. Thus, G115 steel is a strong candidate material for the manufacturing of 600+°C advanced ultra-super-critical (A-USC) fossil fuel power plants in China and elsewhere.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 968-981, October 3–5, 2007,
... into the environment and slows the depletion of key resources. Building on that presumed foundation, several technologies are being developed to capture and permanently store CO2 emissions that result from responsible use of fossil fuel resources. Oxy-combustion is proposed for coal-fired boilers in order to yield...
Abstract
View Papertitled, Overview of Oxy-Combustion Technology for Utility Coal-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
View
PDF
for content titled, Overview of Oxy-Combustion Technology for Utility Coal-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
With nearly half of the world's electricity generation fueled by coal and an increasing focus on limiting carbon dioxide emissions, several technologies are being evaluated and developed to capture and prevent such emissions while continuing to use this primary fossil energy resource. One method aimed at facilitating the capture and processing of the resulting carbon dioxide product is oxy-combustion. With appropriate adjustments to the process, the approach is applicable to both new and existing power plants. In oxy-combustion, rather than introducing ambient air to the system for burning the fuel, oxygen is separated from the nitrogen and used alone. Without the nitrogen from the air to dilute the flue gas, the flue gas volume leaving the system is significantly reduced and consists primarily of carbon dioxide and water vapor. Once the water vapor is reduced by condensation, the purification and compression processes otherwise required for carbon dioxide transport and sequestration are significantly reduced. As an introduction to and overview of this technology, the paper summarizes the basic concepts and system variations, for both new boiler and retrofit applications, and also serves as an organized review of subsystem issues identified in recent literature and publications. Topics such as the air separation units, flue gas recirculation, burners and combustion, furnace performance, emissions, air infiltration issues, and materials issues are introduced.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 400-406, October 11–14, 2016,
... of the HAZ of T91 against cyclic creep loading in actual boilers. REFERENCES [1] Y. Sawaragi, N. Otsuka, H. Semba and S. Yamamoto, Properties of the economical 18-8 Stainless Steel (Super 304) for fossil fired boilers after service exposure with high elevated temperature strength Sumitomo Search, (1994...
Abstract
View Papertitled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H <span class="search-highlight">Boiler</span> Steel Tube
View
PDF
for content titled, Thermal Fatigue Properties of Dissimilar Welded Part of SUPER304H <span class="search-highlight">Boiler</span> Steel Tube
Austenitic stainless steels have been used for boiler tubes in power plants. Since austenitic stainless steels are superior to ferritic steels in high temperature strength and steam oxidation resistance, austenitic stainless steel tubes are used in high temperature parts in boilers. Dissimilar welded joints of austenitic steel and ferritic steel are found in the transition regions between high and low temperature parts. In dissimilar welded parts, there is a large difference in the coefficient of thermal expansion between austenitic and ferritic steel, and thus, thermal stress and strain will occur when the temperature changes. Therefore, the dissimilar welded parts require high durability against the repetition of the thermal stresses. SUPER304H (18Cr-9Ni-3Cu-Nb-N) is an austenitic stainless steel that recently has been used for boiler tubes in power plants. In this study, thermal fatigue properties of a dissimilar welded part of SUPER304H were investigated by conducting thermal fatigue tests and finite element analyses. The test sample was a dissimilar welded tube of SUPER304H and T91 (9Cr-1Mo-V-Nb), which is a typical ferritic heat resistant boiler steel.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 1-8, October 22–25, 2013,
... is also introduced in this paper. USC coal-fired power generation Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25, 2013, Waikoloa, Hawaii, USA httpsdoi.org/10.31399/asm.cp.am-epri-2013p0001 Copyright © 2014 Electric...
Abstract
View Papertitled, Progress of China 700°C USC Development Program
View
PDF
for content titled, Progress of China 700°C USC Development Program
This paper presents an overview of China’s electric power development and the National 700°C Ultra-Supercritical (USC) Coal-Fired Power Generation Technology Innovation Consortium. Besides, the R&D plan and latest progress of China 700°C USC coal-fired power generation technology is also introduced in this paper.
Proceedings Papers
AM-EPRI2019, 2019 Joint EPRI – 123HiMAT International Conference on Advances in High-Temperature Materials, 647-654, October 21–24, 2019,
.... The excellent high temperature corrosion resistances make the Sanicro 25 the most promising steel grade for the A-USC boilers. REFERENCES 1. R. Rautio, S. Bruce, Sandvik Sanicro 25, A new material for ultra supercritical coal fired boilers , The 4th Inter Conf. on Adv. in Mater. Technol. for fossil power...
Abstract
View Papertitled, Investigation of the Steam Oxidation Resistance of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC <span class="search-highlight">Fossil</span> Power Plants
View
PDF
for content titled, Investigation of the Steam Oxidation Resistance of Sanicro 25—A Material for Superheater and Reheaters in High Efficiency A-USC <span class="search-highlight">Fossil</span> Power Plants
Sanicro 25 material is approved for use in pressure vessels and boilers according ASME code case 2752, 2753 and VdTUV blatt 555. It shows higher creep rupture strength than any other austenitic stainless steels available today. It is a material for superheater and reheaters, enabling higher steam parameters of up to about 650 °C steam (ie about max 700 °C metal) without the need for expensive nickel based alloys. The aim of the present study is the investigation of the steam oxidation resistance of the Sanicro 25. The long term test was conducted in the temperature range 600 -750 °C up to 20 000 hours. The morphology of the oxide scale and the microstructure of the bulk material were investigated. In addition, the effect of surface finish and pressure on the steam oxidation were also studied.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 320-337, October 3–5, 2007,
... used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers. Introduction The coal-fired boiler environment produces corrosive conditions in both the furnace region and in the boiler convection pass. The use of corrosion resistant weld overlay materials has become...
Abstract
View Papertitled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
View
PDF
for content titled, Alloy 33: Update on Field Experience in Water Walls and Superheaters
Alloy 33 is a weld overlay material that has generated a lot of interest in the fossil boiler industry. The high chromium content of Alloy 33 has been shown to provide excellent corrosion protection in both waterwall and superheater/reheater tube applications. For waterwall applications, the corrosion resistance has been demonstrated in both laboratory and field tests conducted over the last 5 years. In addition to corrosion resistance, the Alloy 33 has also shown that it is also resistant to cracking (although no material is 100% immune). In the superheater/reheater, the use of spiral clad weld overlay tubes is able to provide resistance to excellent coal ash corrosion. Laboratory and field tests have shown Alloy 33 to have among the best corrosion resistance of all materials studied. The application of Alloy 33 is also easier than other more highly alloyed materials (such as FM-72) and is less expensive. As a result of these favorable experiences, Alloy 33 is now being used commercially to weld overlay both waterwall and superheater/reheater tubes on fossil boilers.
Proceedings Papers
Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
Free
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 41-52, October 22–25, 2013,
... Abstract The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler...
Abstract
View Papertitled, Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
View
PDF
for content titled, Current Status of the U.S. DOE/OCDO A-USC Materials Technology Research and Development Program
The United States Department of Energy (U.S. DOE) Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have been the primary supporters of a U.S. effort to develop the materials technology necessary to build and operate an advanced-ultrasupercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). The program is made-up of two consortia representing the U.S. boiler and steam turbine manufacturers (Alstom, Babcock & Wilcox, Foster Wheeler, Riley Power, and GE Energy) and national laboratories (Oak Ridge National Laboratory and the National Energy Technology Laboratory) led by the Energy Industries of Ohio with the Electric Power Research Institute (EPRI) serving as the program technical lead. Over 10 years, the program has conducted extensive laboratory testing, shop fabrication studies, field corrosion tests, and design studies. Based on the successful development and deployment of materials as part of this program, the Coal Utilization Research Council (CURC) and EPRI roadmap has identified the need for further development of A-USC technology as the cornerstone of a host of fossil energy systems and CO 2 reduction strategies. This paper will present some of the key consortium successes and ongoing materials research in light of the next steps being developed to realize A-USC technology in the U.S. Key results include ASME Boiler and Pressure Vessel Code acceptance of Inconel 740/740H (CC2702), the operation of the world’s first 760°C (1400°F) steam corrosion test loop, and significant strides in turbine casting and forging activities. An example of how utilization of materials designed for 760°C (1400°F) can have advantages at 700°C (1300°F) will also be highlighted.
Proceedings Papers
A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
Free
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 190-201, October 11–14, 2016,
... for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future. INTRODUCTION An effective approach to raise the thermal efficiency and to decrease the CO2, SO2, and NOx emission of coal-fired power plants is to increase the steam parameters...
Abstract
View Papertitled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
View
PDF
for content titled, A Newly Designed Nickel-Based Superalloy GH750 For 700°C Advanced Ultra-Supercritical Power Plants
A new nickel-based superalloy, designated as GH750, was developed to meet the requirements of high temperature creep strength and corrosion resistance for superheater/reheater tube application of A-USC power plants at temperatures above 750°C. This paper introduces the design of chemical composition, the process performance of tube fabrication, microstructure and the properties of alloy GH750, including thermodynamic calculation, room temperature and high temperature tensile properties, stress rupture strength and thermal stability. The manufacturing performance of alloy GH750 is excellent and it is easy to forge, hot extrusion and cold rolling. The results of the property evaluation show that alloy GH750 exhibits high tensile strength and tensile ductility at room and high temperatures. The 760°C/100,000h creep rupture strength of this alloy is larger than 100MPa clearly. Microstructure observation indicates that the precipitates of GH750 consist of the precipitation strengthening phase γ’, carbides MC and M 23 C 6 and no harmful and brittle TCP phases were found in the specimens of GH750 after long term exposure at 700~850°C. It can be expected for this new nickel-based superalloy GH750 to be used as the candidate boiler tube materials of A-USC power plants in the future.
Proceedings Papers
AM-EPRI2013, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference, 167-170, October 22–25, 2013,
... austenitic material “Power Austenite MoW”. age-hardenable nickel-cobalt-chromium-molybdenum alloys boiler tubes nickel-chromium-cobalt alloys qualifications Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference October 22 25, 2013, Waikoloa...
Abstract
View Papertitled, Qualification and Experience on A 617 and C 263 <span class="search-highlight">Boiler</span> Tubes
View
PDF
for content titled, Qualification and Experience on A 617 and C 263 <span class="search-highlight">Boiler</span> Tubes
SMST is producing Ni alloy Boiler tubes since more than 10 years with application in several test loops and R&D programs. This paper will give an overview about the experience with the common grades A617 as well as C263 plus some additional information on the new developed austenitic material “Power Austenite MoW”.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 1-11, October 11–14, 2016,
.../corrosion behavior of advanced alloy systems, and developing fabrication practices for use of these materials in an A-USC plant. The use of advanced steam cycles, with steam temperatures up to 1400°F (760°C) , can increase the efficiency of coal-fired boilers from an average of 35% efficiency (current...
Abstract
View Papertitled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
View
PDF
for content titled, United States Advanced Ultra-Supercritical Component Test Facility with 760°C Superheater and Steam Turbine
Following the successful completion of a 14-year effort to develop and test materials which would allow advanced ultra-supercritical (A-USC) coal-fired power plants to be operated at steam temperatures up to 760°C, a United States-based consortium has started on a project to build an A-USC component test facility, (A-USC ComTest). Among the goals of the facility are to validate that components made from the advanced alloys can perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty for cost estimates of future commercial-scale A-USC power plants. The A-USC ComTest facility will include a gas fired superheater, thick-walled cycling header, steam piping, steam turbine (11 MW nominal size) and valves. Current plans call for the components to be subjected to A-USC operating conditions for at least 8,000 hours by September 2020. The U.S. consortium, principally funded by the U.S. Department of Energy and the Ohio Coal Development Office with co-funding from Babcock & Wilcox, General Electric and the Electric Power Research Institute, is currently working on the Front-End Engineering Design phase of the A-USC ComTest project. This paper will outline the motivation for the project, explain the project’s structure and schedule, and provide details on the design of the facility.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 283-294, October 11–14, 2016,
... tubing components require not only high stress-rupture strength but also good steam corrosion and fire-side oxidation resistance at service temperature. For 620 steam temperature USC boiler the superheater/reheater fire side temperature can reach 680 even higher. Just for this reason high stress...
Abstract
View Papertitled, Research and Development of a New Austenitic Heat-Resisting Steel SP2215 for 600-620°C USC <span class="search-highlight">Boiler</span> Superheater/Reheater Application
View
PDF
for content titled, Research and Development of a New Austenitic Heat-Resisting Steel SP2215 for 600-620°C USC <span class="search-highlight">Boiler</span> Superheater/Reheater Application
For raising thermal efficiency and decreasing CO 2 emission, China had constructed the first 600°C ultra-supercritical(USC) fossil power plant in 2006. Now more than a hundred 600°C, 1000MW USC electric power units have been put in service. Recently, China has also developed 620°C USC power units and some of them have been put in service already. Meanwhile, more than fifty 620°C USC boilers will be produced by various China boiler companies. The austenitic steels TP347H, Super304H and HR3C are routinely used for 600°C USC boilers. Among these steels, a big amount of Super304H has been used for boiler superheater/reheater components application. However, Super304H is characterized by good stress-rupture strength but poor corrosion/oxidation resistance. On the other side, HR3C is characterized by very good corrosion/oxidation resistance but lower stress-rupture strength than Super304H. Now, the China 620°C USC project needs a new austenitic heat resisting steel with high stress-rupture strength and good corrosion/oxidation resistance to fulfill the superheater/reheater tube components application requirement. A new austenitic heat resisting steel SP2215 is based on 22Cr-15Ni with certain amount of Cu and also Nb and N for multiphase precipitation (MX, Cu-rich phase, NbCrN) strengthening in Fe-Cr-Ni austenitic matrix and M 23 C 6 carbide precipitation at grain boundaries. This SP2215 new austenitic steel is characterized by high stress-rupture strength (650°C, 105h>130MPa) and good corrosion/oxidation resistance. SP2215 austenitic steel has been commercially produced in tube product form. This SP2215 new austenitic heat-resisting steel is recommended to be used as superheater/reheater components for 620°C USC boiler application.
Proceedings Papers
AM-EPRI2016, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Eighth International Conference, 310-317, October 11–14, 2016,
... stainless steel coal fired boilers creep rupture strength fabricability hot corrosion reheaters steam oxidation superheaters weldability Advances in Materials Technology for Fossil Power Plants Proceedings from the Eighth International Conference October 11 14, 2016, Albufeira, Algarve, Portugal...
Abstract
View Papertitled, UNS S31035/1.4990 - A Newly Developed High Strength Heat Resistant Austenitic Stainless Steel for Advanced High Efficiency Coal <span class="search-highlight">Fired</span> Power Plants
View
PDF
for content titled, UNS S31035/1.4990 - A Newly Developed High Strength Heat Resistant Austenitic Stainless Steel for Advanced High Efficiency Coal <span class="search-highlight">Fired</span> Power Plants
Energy requirements and environmental concerns have promoted a development in higher-efficiency coal fired power technologies. Advanced ultra-super critical power plant with an efficiency of higher than 50% is the target in the near future. The materials to be used due to the tougher environments become therefore critical issues. This paper provides a review on a newly developed advanced high strength heat resistant austenitic stainless steel, Sandvik Sanicro 25, for this purpose. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than any other austenitic stainless steels available today, and has recently obtained two AMSE code cases. This makes it an interesting option in higher pressures/temperature applications. In this paper, the material development, structure stability, creep strength, steam oxidation and hot corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700°C material temperature.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 1-15, October 3–5, 2007,
... steam-side oxidation ultrasupercritical coal-fired boilers weldability Advances in Materials Technology for Fossil Power Plants Proceedings from the Fifth International Conference R. Viswanathan, D. Gandy, K. Coleman, editors, p 1-15 Copyright © 2008 Electric Power Research Institute Distributed...
Abstract
View Papertitled, U.S. Program on Materials Technology for Ultrasupercritical Coal-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
View
PDF
for content titled, U.S. Program on Materials Technology for Ultrasupercritical Coal-<span class="search-highlight">Fired</span> <span class="search-highlight">Boilers</span>
One of the pathways for achieving the goal of utilizing the available large quantities of indigenous coal, at the same time reducing emissions, is by increasing the efficiency of power plants by utilizing much higher steam conditions. The US Ultra-Supercritical Steam (USC) Project funded by US Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) promises to increase the efficiency of pulverized coal-fired power plants by as much as nine percentage points, with an associated reduction of CO 2 emissions by about 22% compared to current subcritical steam power plants, by increasing the operating temperature and pressure to 760°C (1400°F) and 35 MPa (5000 psi), respectively. Preliminary analysis has shown such a plant to be economically viable. The current project primarily focuses on developing the materials technology needed to achieve these conditions in the boiler. The scope of the materials evaluation includes mechanical properties, steam-side oxidation and fireside corrosion studies, weldability and fabricability evaluations, and review of applicable design codes and standards. These evaluations are nearly completed, and have provided the confidence that currently-available materials can meet the challenge. While this paper deals with boiler materials, parallel work on turbine materials is also in progress. These results are not presented here in the interest of brevity.
Proceedings Papers
AM-EPRI2007, Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, 993-1000, October 3–5, 2007,
... corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling...
Abstract
View Papertitled, Design Considerations for Advanced Materials in Oxygen-<span class="search-highlight">Fired</span> Supercritical and Ultra-Supercritical Pulverized Coal <span class="search-highlight">Boilers</span>
View
PDF
for content titled, Design Considerations for Advanced Materials in Oxygen-<span class="search-highlight">Fired</span> Supercritical and Ultra-Supercritical Pulverized Coal <span class="search-highlight">Boilers</span>
As the demand for worldwide electricity generation grows, pulverized coal steam generator technology is expected to be a key element in meeting the needs of the utility power generation market. The reduction of greenhouse gas emissions, especially CO 2 emissions, is vital to the continued success of coal-fired power generation in a marketplace that is expected to demand near-zero emissions in the near future. Oxycombustion is a technology option that uses pure oxygen, and recycled flue gas, to fire the coal. As a result, this system eliminates the introduction of nitrogen, which enters the combustion process in the air, and produces a highly-concentrated stream of CO 2 that can readily be captured and sequestered at a lower cost than competing post-combustion capture technologies. Oxycombustion can be applied to a variety of coal-fired technologies, including supercritical and ultra-supercritical pulverized coal boilers. The incorporation of oxycombustion technology in these systems raises some new technical challenges, especially in the area of advanced boiler materials. Local microclimates generated near and at the metal interface will influence and ultimately govern corrosion. In addition, the fireside corrosion rates of the boiler tube materials may be increased under high concentration oxygen firing, due to hotter burning coal particles and higher concentrations of SO 2 , H 2 S, HCl and ash alkali, etc. There is also potential to experience new fouling characteristics in the superheater and heat recovery sections of the steam generator. The continuous recirculation of the flue gases in the boiler, may lead to increasing concentrations of deleterious elements such as sulfur, chlorine, and moisture. This paper identifies the materials considerations of oxycombustion supercritical and ultrasupercritical pulverized coal plants that must be addressed for an oxycombustion power plant design.
1